DOI QR코드

DOI QR Code

Immunostimulatory effects of enzymatic porcine placental hydrolyzate against cyclophosphamide-induced immunosuppressed model

돈태반 효소 가수분해물의 cyclophosphamide에 의한 면역 저하 동물 모델에 미치는 면역 증진 효과

  • Received : 2022.03.08
  • Accepted : 2022.03.29
  • Published : 2022.04.30

Abstract

This study investigated the immunostimulatory effect of enzymatic porcine placental hydrolyzate (EPPH) in cyclophosphamide (Cy)-treated rats. This effect of EPPH prevented Cy-induced decreases in body, spleen, and thymus weights and natural killer (NK) cell activity. The numbers of immune cells, such as white blood cells, granulocytes, and lymphocytes, and mid-range absolute counts were significantly higher compared to the control group. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-2, IL-12, and immunoglobulin G (IgG) were notably reduced by Cy, while EPPH prevented these effects. Histopathological analysis of spleen samples revealed the protective effect of EPPH against Cy-induced immunosuppression. The findings demonstrate that EPPH can alleviate immunosuppression by cell viability, tissue damage, and regulation of the levels of cytokines. EPPH may have value as a component of immunostimulatory agents or an ingredient in functional foods.

본 연구는 돈태반 효소 가수분해물의 면역증진 효과를 확인하고자 Cy를 이용한 면역 저하 모델에서 농도별 돈태반 효소 가수분해물을 투여한 실험군의 주간 체중과 조직 중량, 혈중 면역세포(백혈구, 과립구, 림프구, 중간구) 함량, 혈중 cytokine 및 immunoglobulin 함량, 자연살해세포 활성, 비장 조직 분석을 수행하였다. 체중은 대조군과 비교하여 돈태반 효소 가수분해물을 투여한 실험군 중 중농도 투여군(1.03 mg/kg BW, total nitrogen)과 고농도 투여군(2.07 mg/kg BW, total nitrogen)에서 다소 증가하는 경향을 보였고, 조직 중량은 돈태반 효소 가수분해물을 투여한 실험군이 Cy만을 단독 투여한 대조군에 비해 다소 높았으며, 이 중 고농도 투여군은 비장과 흉선 조직 중량 모두에서 대조군보다 유의적으로 높게 조사되었다. 각 실험군별 비장 조직을 이용한 자연살해세포 활성 분석 결과 정상군에 비해 대조군은 유의하게 감소하였으나 돈태반 효소 가수분해물을 고농도로 투여한 실험군과 양성대조군은 대조군에 비해 증가하는 경향을 보여 정상군과 유사한 수준을 보였다. 일반 혈액학적 분석(CBC analysis)에서 돈태반 효소 가수분해물을 투여한 실험군은 대조군에 비해 백혈구와 과립구, 림프구 및 중간구에서 모두 높은 함량을 보이는 것으로 나타났는데, 특히 고농도 투여군은 백혈구의 경우 양성 대조군인 HemoHIM 투여군과 유사한 수준으로, 과립구와 중간구의 경우 양성대조군보다 더 높은 함량을 보이는 것으로 조사되었다. 혈중 cytokine과 immunoglobulin의 함량을 분석한 결과 돈태반효소 가수분해물을 투여한 실험군에서 혈중 TNF-α와 IL-1β, IL-2, IL-12 및 IgG의 함량을 대조군과 비교하여 유의하게 증가시키거나 증가시키는 경향을 보였다. 또한 조직학적 분석에서 비장조직은 대조군에서 관찰되던 백색수질의 붕괴와 적색수질에서의 세포 응축현상은 돈태반 효소 가수분해물을 투여한 실험군에서 점차 호전되는 경향을 보였다. 이러한 결과를 바탕으로 돈태반효소 가수분해물은 Cy로 인한 세포와 조직 손상을 감소시키고 혈중 면역 관련 인자들의 함량을 증가시켜 면역력을 증진시키는데 긍정적인 영향을 미치는 것으로 판단되며, 추후 이를 활용한 건강 기능성 개발 및 의약품 개발에 따른 활용가치가 매우 높을 것으로 생각된다.

Keywords

References

  1. Banerjee KK, Bishayee A, Chatterjee M. Anti-inflammatory effect of human placental extract: a biochemical mechanistic approach. Riv. Eur. Sci. Med. Farmacol. 14: 361-366 (1992)
  2. Bourke CD, Berkley JA Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 37: 386-398 (2016) https://doi.org/10.1016/j.it.2016.04.003
  3. Cesta MF. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34: 455-465 (2006) https://doi.org/10.1080/01926230600867743
  4. Chen F, Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromo. 7: 211-216 (2018) https://doi.org/10.1016/j.ijbiomac.2018.01.169
  5. Chen XG, Huang H, Tian Y, Guo CC, Liang CY, Gong YL, Zou BY, Cai RQ, Lin TY. Cyclosporine, prednisone, and high-dose immunoglobulin treatment of angioimmunoblastic T cell lymphoma refractory to prior CHOP or CHOP-like regimen. Chin. J. Cancer. 30: 731-738 (2011) https://doi.org/10.5732/cjc.011.10071
  6. Choi JH, Lee EB, Park YG, Lee HK, Jang HH, Choe JS, Hwang KA, Park SY, Hwang IG, Hong HC, Lee HJ, Jeong HC, Lim HJ, Lee SH. Aged doraji (Platycodon grandiflorum) ameliorates cyclophosphamide-Induced immunosuppression in mice. Kor. J. Pharmacogn. 50: 219-225 (2019)
  7. Davis L, Kuttan G. Effect of Withania somnifera on cytokine production in normal and cyclophosphamide treated mice. Immunopharmacol. Immunotoxicol. 21: 695-703 (1999) https://doi.org/10.3109/08923979909007135
  8. Haddad PS, Azar GA, Groom S, Boivin M. Natural health products, modulation of immune function and prevention of chronic diseases. Evid. Based Complement. Alternat. Med. 2: 513-520 (2005) https://doi.org/10.1093/ecam/neh125
  9. Han NR, Kim KY, Kim MJ, Kim MH, Kim HM, Jeong HJ. Porcine placenta mitigates protein-energy malnutrition-induced fatigue. Nutrition. 29: 1381-1387 (2013) https://doi.org/10.1016/j.nut.2013.04.016
  10. Han NR, Park CL, Kim NR, Kim HY, Yoou MS, Nam SY, Moon PD, Jeong HJ, Kim HM. Protective effect of porcine placenta in a menopausal ovariectomized mouse. Reproduction. 150: 173-181 (2015) https://doi.org/10.1530/REP-15-0157
  11. Hoffman WP, Ness DK, Van Lier RB. Analysis of rodent growth data in toxicology studies. Toxicol. Sci. 66: 313-319 (2002) https://doi.org/10.1093/toxsci/66.2.313
  12. Hong SH, Kwon MJ, Lee HY, Park YM, Shin DY, Choi JS, Kim MJ, Yang HJ, Shin NR. Immunomodulatory effect of fermented vinegar on cyclophosphamide-induced immunosuppression model. J. Food Nutr. Res. 9: 469-476 (2021) https://doi.org/10.12691/jfnr-9-9-3
  13. Hussain A, Shadma W, Maksood A, Ansari SH. Protective effects of Picrorhiza kurroa on cyclophosphamide-induced immunosuppression in mice. Pharmacognosy Res. 5: 30-35 (2013) https://doi.org/10.4103/0974-8490.105646
  14. Jeong DY, Yang HJ, Jeong SJ, Shin DY, Lee HY, Park YM. Immunoregulatory activities of blueberry yeast fermented powder in immunosuppressed model. J. Korean Soc. Food Sci. Nutr. 49: 433-443 (2020) https://doi.org/10.3746/jkfn.2020.49.5.433
  15. Kiladjian JJ, Bourgeois E, Lobe I, Braun T, Visentin G, Bourhis JH, Fenaux P, Chouaib S, Caignard A. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia. 20: 463-470 (2006) https://doi.org/10.1038/sj.leu.2404080
  16. Kim DW, Chung KT. Ulmus macrocarpa hance reduces cyclophosphamide- induced toxicity in mouse liver. J. Life Sci. 31: 223-228 (2021) https://doi.org/10.5352/JLS.2021.31.2.223
  17. Kim HJ, Lee JW, Kim YL, Lee MH. The effect of placental extract on the expression of tyrosinase, TRP-1 and TRP-2 in SK30 melanoma cells. Korean J. Dermatol. 41: 1612-1618 (2003a)
  18. Kim JH, Lee JW, Kim YI, Lee MH. The effect of placental extract on the expression of tyrosinase, TRP-1 and TRP-2 in SK30 melanoma cells. J. Kor. Derma. Assoc. 41: 1612-1618 (2003b)
  19. Koo SW, Lim MK, Lee KW. Immunomodulatory effects of Zingiber officinale in cyclophosphamide-induced immunosuppress mice. J. Vet. Clin. 32: 56-61 (2015) https://doi.org/10.17555/jvc.2014.02.32.1.56
  20. Kotas, M.E. Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 160: 816-827 (2015) https://doi.org/10.1016/j.cell.2015.02.010
  21. Kumar S, Kanti B, Liaquat A, Biswapati M. Anti-inflammatory and antiplatelet aggregation activity of human placental extract. Act. Pharmacol. Sini. 24: 187-192 (2003)
  22. Kumar S, Sharma G, Sidiq T, Khajuria A, Jain M, Bhagwat D, Dhar KL. Immunomodulatory potential of a bioactive fraction from the leaves of Phyllostachys bambusoides (bamboo) in BALB/c mice. EXCLI J. 13: 137-150 (2014)
  23. Lin ZB, Zhang HN. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta. Pharmacol. Sin. 25: 1387-1395 (2004)
  24. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS. Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo. J. Pharmacol. Exp. Ther. 302: 451-465 (2002) https://doi.org/10.1124/jpet.102.033506
  25. Mitsui Y, Bagchi M, Marone PA, Moriyama H, Bagchi D. Safety and toxicological evaluation of a novel, fermented, peptideenriched, hydrolyzed swine placenta extract powder. Toxicol. Mech. Methods. 25: 13-20 (2015) https://doi.org/10.3109/15376516.2014.971139
  26. Miyauchi A. Hiramine C, Tanaka S. Hojo, K. Differential effects of a single dose of cyclophosphamide on T cell subsets of the thymus and spleen in mice: flow cytofluorometry analysis. Tohoku J. Exp. Med. 162: 147-167 (1990) https://doi.org/10.1620/tjem.162.147
  27. Noh EM, Kim JM, Lee HY, Song HK, Joung SO, Yang HJ, Kim MJ, Lim KS, Lee YR. Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide induced immunosuppressed rat model. BMC Complement. Altern. Med. 19: 322 (2019) https://doi.org/10.1186/s12906-019-2724-0
  28. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide- protein complexes. Curr. Med. Chem. 7: 715-729 (2000) https://doi.org/10.2174/0929867003374705
  29. Ozkok A, Kaymaz S, Elcioglu OC, Bakan A, Odabas AR. Cyclophosphamide induced early-onset interstitial lung disease. CEN Case Rep. 1: 128-129 (2012) https://doi.org/10.1007/s13730-012-0021-6
  30. Park YM, Lee HY, Shin DY, Lee YH, Yang YJ, Lee HS, Lee JO, Choi KS, Kang JH, Cho YH, Kim MG, Yun CY, Kim MJ, Jang DJ, Yang HJ, Lee YR. Immunostimulatory activity of black rice bran in cyclophosphamide-induced immunosuppressed rats. Nat. Prod. Commun. 15: 1-11 (2020)
  31. Pizzolo G, Trentin L, Vinante F, Agostini C, Zambello R, Masciarelli M, Feruglio C, Dazzi F, Todeschini G, Chilosi M, Veneri D, Zanotti R, Benedetti F, Perona G, Semenzato G. Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission. Br. J. Cancer. 58: 368-372 (1988) https://doi.org/10.1038/bjc.1988.221
  32. Rasmussen L, Arvin A. Chemotherapy-induced immunosuppression. Environ. Health Perspect. 43: 21-25 (1982) https://doi.org/10.1289/ehp.824321
  33. Rehman MU, Tahir M, Ali F, Qamar W, Lateef A, Khan R, Quaiyoom A, Hamiza OO, Sultana S. Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol. Cell Biochem. 365: 119-127 (2012) https://doi.org/10.1007/s11010-012-1250-x
  34. Rosenthal M. The application of an extract of human placenta in the treatment of rheumatic affections. Int. J. Tiss. Reac. 4: 147-151 (1982)
  35. Shalit I, Kletter Y, Halperin D, Waldman D, Vasserman E, Nagler A, Fabian I. Immunomodulatory effects of moxifloxacin in comparison to ciprofloxacin and G-CSF in a murine model of cyclophosphamide- induced leukopenia. Eur. J. Haematol. 66: 287-296 (2001) https://doi.org/10.1034/j.1600-0609.2001.066005287.x
  36. Shokrzadeh M, Chabra A, Ahmadi A, Naghshvar F, Habibi E, Salehi F, Assadpour S. Hepatoprotective effects of Zataria multiflora ethanolic extract on liver toxicity induced by cyclophosphamide in mice. Drug Res. 65: 169-175 (2015) https://doi.org/10.1055/s-0034-1370932
  37. Son CG, Han SH, Cho JH, Shin JW, Cho CH, Lee YW. Induction of hemopoiesis by saenghyuldan, a mixture of Ginseng radix, Paeoniae radix alba, and Hominis placenta extracts. Acta. Pharmacol. Sin. 24: 120-126 (2003)
  38. Taguchi T. Induction chemotherapy for solid tumors. Gan To Kagaku Ryoho. 40: 679-683 (2013)
  39. Tiwary S, Shukla D, Tripathi A, Agrawal S, Singh M, Shukla V. Effect of placental-extract gel and cream on non-healing wounds. J. Wound Care. 15: 325-328 (2006) https://doi.org/10.12968/jowc.2006.15.7.26937
  40. Togashi, S., Takahashi, N., Iwama, M., Watanabe, S., Tamagawa, K., and Tetsuya, F. Antioxidative collagen-derived peptides in humanplacenta extract. Placenta 23: 497-502 (2002) https://doi.org/10.1053/plac.2002.0833
  41. Wang K, Conlon M, Ren W, Chen BB, Baczek T. Natural products as targeted modulators of the immune system. J. Immunol. Res. 7862782 (2018) https://doi.org/10.1155/2018/7862782
  42. Xun CQ. Thornpson JS, Jennings CD, Brown SA, Widrner MB. Effects of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83: 2360-2367 (1994) https://doi.org/10.1182/blood.v83.8.2360.2360
  43. Yu Q, Nie SP, Wang JQ, Liu XZ, Yin PF, Huang DF, Li WJ, Gong DM, Xie MY. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice. Int. J. Biol. Macromol. 64: 395-401 (2014) https://doi.org/10.1016/j.ijbiomac.2013.12.029
  44. Zhang M, Liu X, Li J, He L, Tripathy D. Chinese medicinal herbs to treat the side-effects of chemotherapy in breast cancer patients. Cochrane Data. Syst. Rev. 18: CD004921 (2007)
  45. Zhou Y, Chen X, Yi R, Li G, Sun P, Qian Y, Zhao X. Immunomodulatory effect of Tremella polysaccharides against cyclophosphamide-induced immunosuppression in Mice. Molecules 23: 239 (2018) https://doi.org/10.3390/molecules23020239