• Title/Summary/Keyword: 가상 센서

Search Result 480, Processing Time 0.028 seconds

The implementation of home network using the RS422 Multi-drop mode serial communication (RS422 Multi-drop mode 시리얼 통신을 이용한 홈 네트워크 구현)

  • Byun Pil-sang;Kim Myeung-hwan;Kim Deok-jin;Park Se-hyun;Park Yeoun-sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1445-1451
    • /
    • 2005
  • Home-Network is an integrated network of the PC and all electric home appliances in the home so that they can communicate with each other. In the 21th century, here are various technology for Home Network environment such as HomePNA, IEEE 1394, Ethernet Lan and Bluetooth. For Home Network construction, generally, the standard series interface 'RS232' is used to make communication possible between electric home appliances. However Home network using RS232 has a problem. That is, All machines have to be connected to each other with RS232 using Point-to-Point mode. In this case, the system becomes complicated because we have to use circuits as much as there are machines and increased expenses. To improve this problem, In this thesis, designed home network using RS422 Multi-drop mode serial communication and controled it with embedded linux system. And connected RS422 with motors and sensors using PIC to make the home network virtual environment.

A Study on Motion and Position Recognition Considering VR Environments (VR 환경을 고려한 동작 및 위치 인식에 관한 연구)

  • Oh, Am-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2365-2370
    • /
    • 2017
  • In this paper, we propose a motion and position recognition technique considering an experiential VR environment. Motion recognition attaches a plurality of AHRS devices to a body part and defines a coordinate system based on this. Based on the 9 axis motion information measured from each AHRS device, the user's motion is recognized and the motion angle is corrected by extracting the joint angle between the body segments. The location recognition extracts the walking information from the inertial sensor of the AHRS device, recognizes the relative position, and corrects the cumulative error using the BLE fingerprint. To realize the proposed motion and position recognition technique, AHRS-based position recognition and joint angle extraction test were performed. The average error of the position recognition test was 0.25m and the average error of the joint angle extraction test was $3.2^{\circ}$.

3DImmersion Type Virtual Environment System : Training Interruption-free Live-Line Workers (무정전 활선작업 피교육자를 위한 3차원 몰입형 가상환경 교육시스템의 개발)

  • 정영범;박창현;김기현;장길수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.22-30
    • /
    • 2004
  • As an information-oriented society comes, many people use PC and depend on database that network server has. However, the online data can be missed when a blackout happens and also a power failure effects on standard of judgment on Power Quality. Thus, it is reason of a trend using interruption-free live-line work when a trouble happens to power system. However, the 83% among the number of people who receive an electric shock experience when a laborer is doing interruption-free live-line works. In interruption-free method, the education and the training problem has been issued. However, we have a few instructors for that training. Furthermore, the trainees have short training period, just 4 weeks. In this paper, to develope the method that has no restriction of a time and place and reduce the wasteful materials, immersion type virtual reality(or environment) technology is used. The users of a 3D immersion type VR training system can interact with the system by doing same action in the real safe environment. Thus, it can be valuable to apply this training system to a dangerous work like as "Interruption-free live-line work exchanging COS(Cut-Out-Switch)". In this program, the user works with a instruction on the window and speaker and can't work other tasks until each part of the task completed. The workers using this system can use their hands and viewpoint movement as he is in a real environment but the trainee can't use all parts and senses of a real body with the current VR technology. Despite of this weak point, when we consider the trends of improvement in electrical devices and communication technology, we can say that 3D graphic VR application has a high potentiality.

Design and Evaluation of a Hand-held Device for Recognizing Mid-air Hand Gestures (공중 손동작 인식을 위한 핸드 헬드형 기기의 설계 및 평가)

  • Seo, Kyeongeun;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • We propose AirPincher, a handheld pointing device for recognizing delicate mid-air hand gestures to control a remote display. AirPincher is designed to overcome disadvantages of the two kinds of existing hand gesture-aware techniques such as glove-based and vision-based. The glove-based techniques cause cumbersomeness of wearing gloves every time and the vision-based techniques incur performance dependence on distance between a user and a remote display. AirPincher allows a user to hold the device in one hand and to generate several delicate finger gestures. The gestures are captured by several sensors proximately embedded into AirPincher. These features help AirPincher avoid the aforementioned disadvantages of the existing techniques. We experimentally find an efficient size of the virtual input space and evaluate two types of pointing interfaces with AirPincher for a remote display. Our experiments suggest appropriate configurations to use the proposed device.

A Study on vertical mode system identification for a single tilt wing UAV (단일 틸트윙 방식 무인기의 수직모드 시스템 식별 기법 연구)

  • Seo, Ilwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.937-946
    • /
    • 2014
  • This paper presents system identification of a single tilt wing UAV. A Modified Equation Error Method(MEEM) and Extended Kalman Filter(EKF) are used for the identification of a single tilt wing UAV system in frequency-domain and time-domain, respectively. Simulated flight data is obtained from CNUX-3's vertical mode linear simulation with realistic sensor noise. System identification performance is analyzed with respect to a variety of design parameters of the MEEM. Also, High accuracy Fourier Transform(HFT) is applied to enhance the performance of MEEM. The results of the MEEM is compared with those of the EKF. Design parameters of the MEEM and initial conditions of the EKF are decided from optimization.

Accuracy Analysis According to the Number of GCP Matching (지상기준점 정합수에 따른 정확도 분석)

  • LEE, Seung-Ung;MUN, Du-Yeoul;SEONG, Woo-Kyung;KIM, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.127-137
    • /
    • 2018
  • Recently, UAVs and Drones have been used for various applications. In particular, in the field of surveying, there are studies on the technology for monitoring the terrain based on the high resolution image data obtained by using the UAV-equipped digital camera or various sensors, or for generating high resolution orthoimage, DSM, and DEM. In this study, we analyzed the accuracy of GCP(Ground control point) matching using UAV and VRS-GPS. First, we used VRS-GPS to pre-empt the ground reference point, and then imaged at a base altitude of 150m using UAV. To obtain DSM and orthographic images of 646 images, RMSE was analyzed using pix4d mapper version As a result, even if the number of GCP matches is more than five, the error range of the national basic map(scale : 1/5,000) production work regulations is observed, and it is judged that the digital map revision and gauging work can be utilized sufficiently.

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

Performance Analysis of Cooperative Localization Algorithm Considering Wireless Propagation Characteristics (무선 전파특성을 고려한 협력 위치추정 알고리즘 성능분석)

  • Jeong, Seung-Heui;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1511-1519
    • /
    • 2010
  • In this paper, we proposed and analyzed a RSSI based cooperative localization algorithm considering wireless propagation characteristics in indoor and outdoor environments for wireless sensor networks, which can estimate the BN position. The conventional RSSI based estimation scheme has low precision ranging due to instability propagation characteristics by time variable. Hence, we implemented ray-launching simulator for analysis of propagation characteristics in 4 case, and experimented proposed localization scheme with 4 RN and 1 to 5 BN. Simulation results show that NLCA has estimation error as 2m-3.5m, however, proposed CLA/ECLA has 1.3m-2.5m/0.5m-1.2m by same environments. Therefore, if we can consider channel characteristics, the proposed algorithm provides higher localization accuracy than RSSI based conventional one.

Application method of cultural heritage contents exhibition combining augmented reality technology (증강현실 기술을 결합한 문화유산콘텐츠의 전시활용)

  • Kang, Jae-Shin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.137-143
    • /
    • 2017
  • Augmented reality makes people feel realistic and reduces the damage to cultural properties that can come into contact with the actual cultural heritage. Augmented reality has the advantage that it can show the past appearance of the historical building or relics, the environment, or related information in addition to the current real environment. Despite these values ​and advantages, As a result of researches and analyzes of the Augmented Reality contents of the National Museum, 'palace in my hand', and the Miruksa project In the field of domestic cultural heritage warriors, augmented reality technology has shown a very negative attitude such as simply showing cultural heritage content or using it as a guide. However, various conditions such as display and sensor hardware and technology needed to realize augmented reality more effectively are improving day by day. And If you have various facilities such as the idea of ​adding storytelling to the exhibits and WiFi building, In the near future, it will be equipped with a display system of cultural heritage contents that combines augmented reality with a more complete one.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.