DOI QR코드

DOI QR Code

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions

임무조건에 따른 달 착륙선 항법시스템 요구성능 분석

  • Received : 2017.01.03
  • Accepted : 2017.08.10
  • Published : 2017.09.01

Abstract

The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.

달 착륙선의 항법 시스템은 자율 정밀 항법 성능을 확보하기 위해 관성측정기와 별추적기, 고도계, 속도계, 지형상대항법 카메라 등 다양한 항법용 전장부품으로 구성되는데 착륙선의 착륙 시나리오와 임무 요구 성능에 따라 적합한 성능의 항법용 전장부품 선정이 필요하다. 본 논문에서는 달 착륙선에 요구되는 항법용 전장부품의 사양을 공분산해석을 통해 분석하였다. 77차 상태변수로 구성되는 기준 시스템 오차모델과 센서의 측정모델을 정의하고 착륙선의 임무 요구 성능은 90m($3{\sigma}$) 착륙 위치 정확도를 요구하는 정밀탐사 임무와 6km($3{\sigma}$)의 착륙 오차가 허용되는 영역탐사 임무로 구분하였다. 자율항법 시작 시점에 따라 PDI(Powered descent initiation)와 DOI(Deorbit initiation) 시나리오로 나누고 항법용 전장부품의 조합과 착륙 시나리오에 따른 성능 분석을 통해 가상의 임무 요구 성능을 만족하기 위한 항법 시스템의 요구사양을 도출하였다.

Keywords

References

  1. Tye, B., Stephen, P., and Timothy, C., "GN&C Development for Future Lunar Landing Missions," AIAA Guidance, Navigation, and Control Conference. 2010.
  2. Brady, T. and Schwartz, J., "ALHAT System Architecture and Operational Concept," IEEE Aerospace Conference, 2007.
  3. DeMars, K. J. and Bishop, R. H., "Precision Descent Navigation for Landing at the Moon," Advances in the Astronautical Sciences, 129(2), 2008, pp. 1027-1050.
  4. Geller, D.K. and Christensen, D., "Linear Covariance Analysis for Powered Lunar Descent and Landing," Journal of Spacecraft and Rockets, 46(6), 2009, pp. 1231-1248. https://doi.org/10.2514/1.38641
  5. Melloni, S., et al, "GNC Solutions for Next-Moon Lunar Lander Mission," 21th International Symposium on Space Flight Dynamics, 2009.
  6. Ely, T. A., Heyne, M., and Riedel, J. E., "Altair Navigation During Translunar Cruise, Lunar Orbit, Descent, and Landing," Journal of Spacecraft and Rockets, 49(2), 2012, pp. 295-317. https://doi.org/10.2514/1.52233
  7. Ku, P. M., Park, Y. B., and Park, C. G., "Performance Analysis of Batch Process Terrain Relative Navigation Using Area based Terrain Roughness Index for Lunar Lander," Jouranl of The Society for Aeronautical and Space Sciences, 44(7), 2016, pp. 629-639.
  8. Li, S., Jiang, X., and Tao, T., "Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing," Journal of Spacecraft and Rockets, 53(2), 2016, pp. 258-277. https://doi.org/10.2514/1.A33208
  9. Huxel, P. J. and Cohanim, B. E., "Small lunar lander/hopper navigation analysis using linear covariance," IEEE Aerospace Conference, 2010.
  10. Gelb, A., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.
  11. Titterton, D. and Weston, J. L., Strapdown Inertial Navigation Technology, 2nd Edition, Reston, VA, American Institute of Aeronautics and Astronautics, 2004.
  12. Robert, H.B., et al., "An Inertial Dual-State State Estimator for Precision Planetary Landing with Hazard Detection and Avoidance," AIAA Guidance, Navigation, and Control Conference, 2016.
  13. Pittelkau, M. E., "Kalman Filtering for Spacecraft System Alignment Calibration," Journal of Guidance, Control, and Dynamics, 24(6), 2001, pp. 1187-1195. https://doi.org/10.2514/2.4834
  14. Zanetti, R., Advanced Navigation Algorithm for Precision Landing, PhD thesis, The University of Texas at Austin, 2007.
  15. Trawny, N., et al., "Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks," Journal of Field Robotics, 24(5), 2007, pp. 357-378. https://doi.org/10.1002/rob.20189
  16. Chatfield, A. B., Fundamentals of High Accuracy Inertial Navigation, Reston, VA, American Institute of Aeronautics and Astronautics, 1997.
  17. Honeywell, Miniature Inertial Measurement Unit, 2006.
  18. Northrop Grumman, LN-200s Inertial Measurement Unit, 2013.
  19. Roh, W. R., et al., "Development of Fiber Optic Gyro for KSLV-II Inertial Navigation Guidance Unit," KSAS Fall Conference, 2015.
  20. Lorenz, R. D., "Radar Altimeters on Probes and Landers (and Doppler Radars)," 12th Interplanetary Probe Workshop, 2015.