• Title/Summary/Keyword: 가상일원리

Search Result 43, Processing Time 0.024 seconds

The Study on Axisymmetric Deformation of Thin Orthotropic Composite Pressure Vessel (직교이방성 복합재료로 만든 두께가 얇은 압력용기의 변형에 관한 연구)

  • 김형원;최용규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • The analytic solution of radial displacements of thin cylindrical pressure vessel with carbon fiber T700/Epoxy orthotropic composites was obtained using equilibrium equations of the orthogonal curvilinear coordinate system. The governing equations with the simplified strain versus displacement relation of 3-dimensional curvilinear coordinate system were derived from the variational principle and the virtual work principle. Some theoretical analyses were presented and compared with the results of hydraulic tests for the pressure vessels with some various thicknesses. The results of the theoretical analysis and the hydraulic test were reasonably matched.

Art Education through Artwork: Focusing on the Mathematical Principle (미술작품을 통한 미술교육: 수학 원리를 중심으로)

  • Jeong, Kyung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.447-457
    • /
    • 2010
  • Mathematical principle is present in artwork or architectural building. It is important for middle school students to find these mathematical principles in artwork. But it is difficult to achieve original purpose of art education through student activity that only looks for mathematical principle present in artwork and architectural building. Thus, it is necessary for students to have activities to find mathematical principle in artwork for themselves through artistic experience and appreciation of artwork and to create, appreciate and express new artwork to which they apply the mathematical principle. In this article, I researched a couple of artwork or architectural buildings from this point of view in which mathematical principle is present. I also developed hypothetical teacher activities and student activities for program by providing artwork of Escher in which mathematical principle is present as an example.

An elastic contact algorithm in SPH by virtual work principle (SPH에 가상일 원리를 적용한 탄성 접촉 알고리즘)

  • Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1346-1351
    • /
    • 2003
  • There is few research about contact problem in SPH because it is primarily suitable to analyze the large deformation problem. However, an elasto-plastic problem with small deformation need to be considered about contact characteristics. The numerical formulating methods for SPH is induced to be able to obtain solutions based on a variational method in contact problem. The contact algorithm presented is applied to the elastic impact problem in 1D and 2D. The results show thai an imaginary tension and a numerical instability which happen in impacting between different materials can be removed and contact forces which could not have been calculated are able to obtain.

  • PDF

Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane (비동질 반무한 평면에서의 비례경계유한요소법)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2007
  • In this paper, the equations of the scaled boundary finite element method are derived for non-homogeneous half plane and analyzed numerically In the scaled boundary finite element method, partial differential equations are weaken in the circumferential direction by approximation scheme such as the finite element method, and the radial direction of equations remain in analytical form. The scaled boundary equations of non-homogeneous half plane, its elastic modulus varies as power function, are newly derived by the virtual work theory. It is shown that the governing equation of this problem is the Euler-Cauchy equation, therefore, the logarithm mode used in the half plane problem is not valid in this problem. Two numerical examples are analysed for the verification and the feasibility.

A Study on Deflection Characteristic of Composite Girder with Incomplete Interaction (불완전 합성형의 처짐특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Kim, Yun Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.437-449
    • /
    • 1998
  • In order that the steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. However, all connectors are flexible to some extent, and therefore incomplete interaction always exists. This paper presents a practical structural analysis of composite girders with incomplete interaction by three methods. One is the stiffness matrix method derived from the general solutions of differential equation, another is the finite element analysis that alternate method of solution treats the structure as a frame and defines the spring as an additional member, and the other is the finite element analysis using principle of virtual work. The deflection characteristic of composite girder is investigated using these three methods. Also, this paper propose a simplified procedure of estimating a degree of imperfection for a composite girder with incomplete interaction using the sectional properties of girder and spring constants of shear connectors.

  • PDF

A Study on the Numerical Technique for the Nonlinear Deformation Analysis of Solid Structures(1) -General Theory Development- (고체구조물의 비선형변형 수치해석에 대한 이론적 고찰(1) -일반이론-)

  • Youngjoo Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.193-202
    • /
    • 1998
  • 본 논문에서는 비선형 고체역학 이론에 대하여 특히 시간에 무관한 변형을 하는 초탄성 및 탄소성고체물질의 비선형 변형이론에 대하여 철저한 분석을 수행하였다 특히 비선형 변형의 해석방범론에 대하여 특별한 관심을 가지고 분석하였다. 비선형 변형해석 방법론으로 널리 논의되고 있는 증분뉴튼랩슨 방법에 대하여 수정된 개념을 제시하여 비선형 변형 해석의 정 확성을 향상시켰다.

  • PDF

Finite Element Analysis of Thermorheologically Simple Viscoelastic Solids (열유동학적으로 단순한 점탄성체의 유한요소해석)

  • 심우진;박인규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 1996
  • In this paper, the finite element formulation for the thermal analysis of quasi-static, uncoupled, homogeneous, isotropic and linear viscoelastic problems is presented based on the principle of virtual work. The viscoelastic material is assumed to be thermorheologically simple, which is well known material property in a large class of high polymers. The variational formulation and the finite element equation in matrix from are derived. Effective generation and storage of the hereditary stiffness matrices are given in detail especially for the case of the steady state temperature distribution T=T(x). Some numerical examples are given and compared with published results to show the versatility of the derived finite element formulations.

  • PDF

Geometric Nonlinear Analysis of Flexible Media Using $C^1$ Beam Element ($C^1$보요소를 이용한 유연매체의 기하비선형 해석)

  • Jee, Jung-Geun;Hong, Sung-Kwon;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.326-329
    • /
    • 2005
  • In the development of sheet-handling .machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at suck a high speed flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static analysis of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based m the updated Lagrangian approach are derived using $C^1$ beam element and numerical simulations are performed by Updated Newton-Raphson(UNR) method.

  • PDF

Three Dimensional Stress Analysis of Composite Laminates using Stress Functions and Interface Modeling (응력함수와 층간면 모델링을 이용한 복합재 적층판의 3차원 응력해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • 복합재 적층판의 자유단 근처에서 나타나는 층간 응력의 집중 현상을 층간면 효과를 고려해 해석하였다. 복합재 적층판 내부의 임의의 위치에서 3차원 평형방정식을 만족시키기 위해 렉니츠키 응력함수를 도입하였으며, 가상일의 원리를 이용하여 지배방정식을 유도하였다. 주어진 응력함수를 이용하여 구한 3차원 응력들은 복합재 적층판의 아래 위 면뿐만 아니라 자유단에서 하중자유조건을 잘 만족한다. 기하학적 불연속성 때문에 복합재 적층판의 자유단에서는 응력의 특이가 발생하지만, 층간면 효과를 고려하게 되면 층간응력의 집중현상을 정확하게 해석할 수 있다. 자유단에서 발생한 층간응력의 크기를 보면, 층간면 효과를 고려할 경우, 응력특이 효과가 많이 줄어드는 것을 관찰할 수 있다. 본 연구에서 주어진 층간면에서의 정확한 응력 해석은 복합재 적층판의 강도설계를 수행하는 초기 설계 툴로 사용할 수 있다.

  • PDF