• Title/Summary/Keyword: 가공모델

Search Result 960, Processing Time 0.022 seconds

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

Applications of Force Balance Method to Several Metal Forming Problems (성형가공문제에 대한 힘 평형법의 응용)

  • 최재찬;김진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.653-660
    • /
    • 1986
  • Two uppor bound solutions, by the force balance method and by a kinematically admissible velocity field, are compared for the metal forming problems in plane strain. It is concluded that these two approaches always give identical results when the geometrical configurations of the deformation model reman the same. By detailed derivations for plastic bending of a notched bar, closed die forging, compression of a rectangular block, machining with a restricted contact tool and plane strain backward extrusion, the identity of both approaches is verified.

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining (CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발)

  • 고정훈;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

Optimization of edger model to increase rolling yields in the plate mill (Edger 압연모델 최적화를 통한 후판압연 실수율 개선)

  • 천명식;이준정;문영훈
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.208-215
    • /
    • 1999
  • To increase rolling yields by minimizing trimming losses of hot-rolled plate, optimization logic for the edger model has been developed. The logic to determine optimum edging amount model has been formulated on the basis of actual production rolling data. In case of broadside rolling, the fish tail shape at the sides of plate was better for reducing the crop loss and this could be achieved when the edging amount of broadside rolling was increased. At a given broadside rolling ratio, methodology to determine optimum edging amount for the finish rolling which could minimize the width deviation of plate were systematically derived. Therefore, for a given broadside rolling condition and the permissible tolerance in width deviation of plate, it was possible to optimize the edging amount in finish rolling to maximize rolling yields. The application of optimization logic in this study increased rolling yields from approximately 10% to 30% at various longitudinal eding raitos.

  • PDF

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

An Application of Non-linear Viscoelastic Model to Capillary Extrusion of Rubber Compounds (고무복합체의 모세관 압출에서 비선형 점탄성 모델의 적용)

  • Choi, S.H.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.260-265
    • /
    • 2007
  • Rubber compounds have high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate. In this study, die swells of rubber compounds at the capillary die have been investigated through experiment and computer simulation. Experiments and simulations have been performed using fluidity tester and commercial CFD code, Polyflow respectively. Die swells of rubber compounds in a capillary die were predicted using non-linear differential viscoelastic model, Phan-Thien-Tanner(PTT) model for various relaxation times and relaxation modes. The results of simulation were compared with the experiments. Pressure and velocity distribution, and circulation flows at the comer of capillary die have been investigated through computer simulation. It is concluded that the PTT model successfully represented the amount of the die swell of rubber compounds for various relaxation times at different modes.

Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model (이동경화 모델에 기반한 MS1470 강판의 스프링백 예측)

  • Park, S.C.;Park, T.;Koh, Y.;Seok, D.Y.;Kuwabara, T.;Noma, N.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Spring-back of MS1470 steel sheets was numerically predicted using a non-linear kinematic hardening material behavior based on the Yoshida-Uemori model. From uniaxial tension and uniaxial tension-compression-tension data as well as the uniaxial tension-unloading-tension data, the parameters of the Yoshida-Uemori model were obtained. For the numerical simulations, the Yoshida-Uemori model was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. The model performance was validated against the measured spring-back from the benchmark problems of NUMISHEET 2008 and NUMISHEET 2011, the 2-D draw bending test and the S-rail forming test, respectively.

A new Model to Optimize the Process Conditions in Tension Leveling - Part II : Prediction of the Residual Stress Distribution (텐션 레벨링 공정 최적화를 위한 수식 모델 - Part II : 잔류응력 분포 예측)

  • Cho, Y.S.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.377-382
    • /
    • 2013
  • Tension leveling is the process that removes the shape defects such as edge waves and center buckles, which may be formed in the rolled strip. The main purpose of tension leveling is to eliminate the differences in elongation in order to reduce the residual stresses. In this paper, a new approach for the optimization of the process conditions in tension leveling is presented. This new approach is an analytic model that predicts the residual stresses from the strip curvature. The prediction accuracy of the proposed model is examined through comparison with the predictions from a finite element model.