DOI QR코드

DOI QR Code

Combined Two-Back Stress Models with Damage Mechanics Incorporated

파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델

  • Published : 2008.06.01

Abstract

In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

Keywords

References

  1. E. C. Aifantis, 1987, The Physics of Plastic Deformation, Int. J. Plasticity, Vol. 3 (3), pp. 211-247 https://doi.org/10.1016/0749-6419(87)90021-0
  2. H. M. Zbib, E. C. Aifantis, 1988, On the Localization and Post-localization Behavior of Plastic Deformation I On the Initiation of Shear Bands, Research Mechanica, Vol. 23, pp. 261-277
  3. R. K. Abu Al-Rub, G. Z. Voyiadjis, 2003, On the coupling of anisotropic damage and plasticity models for ductile materials, Int. J. Solids and Structures, Vol. 40 (11), pp. 2611-2643 https://doi.org/10.1016/S0020-7683(03)00109-4
  4. J. Lemaitre, 1986, Local Approach of Fracture, Engng. Fracture Mech., Vol. 25, pp. 523-537 https://doi.org/10.1016/0013-7944(86)90021-4
  5. P. I. Kattan, G. Z. Voyiadjis, 1992, A Plasticity- Damage Theory for Large Deformation of Solids-I Theoretical Formulation, Int. J. Engng. Sci., Vol. 30 (9), pp. 1089-1108 https://doi.org/10.1016/0020-7225(92)90059-P
  6. J. E. Paulun, R. B. Pecherski, 1992, On the relation for plastic spin, Archive Applied Mechanics, Vol. 62, pp. 376-385 https://doi.org/10.1007/BF00804598
  7. J. Ning and E. C. Aifantis, 1994, On anisotropic finite deformation plasticity Part II. A two-component model, Acta Mechanica, Vol. 106, pp. 73-85 https://doi.org/10.1007/BF01300945
  8. M. Kuroda, 1995, Plastic spin associated with a corner theory of plasticity, Int. J. Plasticity, Vol. 11 (5), pp. 547-570 https://doi.org/10.1016/S0749-6419(95)00021-6
  9. M. Kuroda, 1996, Roles of Plastic Spin in Shear banding, Int. J. Plasticity, Vol. 12 (5), pp. 671-693 https://doi.org/10.1016/S0749-6419(96)00024-1
  10. E. H. Lee., 1984, Finite Deformation Effects in Plasticity Analysis, Numerical Analysis of forming Processes, Ed. J. F. Pittman, O. C. Zienkiewicz, R. D. Wood and J. M. Alexander, John Wiley & Sons Ltd., pp. 373-391
  11. Y. F. Dafalias, 1982, A Missing Link in the Macroscopic Constitutive formulation of Large Plastic Deformation, Plasticity today, Modeling, Methods and Application, Proc. Int. Symp. On Current Trends and Results in Plasticity, CISM, Udine Italy, pp. 135-151
  12. Y. F. Dafalias, 1983, Corotational Rates for Kinematic hardening at Large Plastic Deformation, J. App. Mech., Vol. 50, pp. 561-565 https://doi.org/10.1115/1.3167091
  13. Y. F. Dafalias, 1985, The Plastic Spin, J. App. Mech., Vol. 52, pp. 865-871 https://doi.org/10.1115/1.3169160
  14. J. K. Dienes, 1979, On the Analysis of Rotation and Stress Rate in Deforming Bodies, Acta Mechanica, Vol. 32, pp. 217-232 https://doi.org/10.1007/BF01379008
  15. J. E. Paulun and R. B. Pecherski, 1987, On the application of the plastic spin concept for the description of anisotropic hardening in finite deformation plasticity, Int. J. Plasticity, Vol. 3 (4), pp. 303-314 https://doi.org/10.1016/0749-6419(87)90006-4
  16. G. Z. Voyiadjis, R. K. Abu Al-Rub, and A. Palazotto, 2004, Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory, Int. J. Plasticity, Vol. 20 (6), pp. 981-1038 https://doi.org/10.1016/j.ijplas.2003.10.002
  17. N. Bonora, 1997, A Nonlinear CDM Model for Ductile Failure, Engng. Fracture Mech., Vol. 58 (1/2), pp. 11-28 https://doi.org/10.1016/S0013-7944(97)00074-X
  18. G. Z. Voyiadjis G.Z. and T. Park, 1999, Kinematics description of damage for finite strain plasticity, International J. Engng Sci., Vol. 56 (4), pp. 483-511
  19. Z. Mroz, H. P. Shrivastava, R. N. Dubey, 1976, A Non-Linear Hardening Model and Its Application to Cyclic loading, Acta Mechanica, Vol. 25, pp. 51-61 https://doi.org/10.1007/BF01176929
  20. J. L. Chaboche, 1986, Time-Independent Constitutive Theories for Cyclic Plasticity, Int. J. Plasticity, Vol. 2 (2), pp. 149-188 https://doi.org/10.1016/0749-6419(86)90010-0
  21. A. Phillips, J. L. Tang, M. Ricciuti, 1974, Some New Observation on Yield Surfaces, Acta Mechanica, Vol. 20, pp. 23-39 https://doi.org/10.1007/BF01374960
  22. A. Phillips, C. W. Lee, 1979, Yield Surfaces and Loading Surfaces Experiments and Recommendations, Int. J. Solids and Structures, Vol. 15 (9), pp. 715-729 https://doi.org/10.1016/0020-7683(79)90069-6
  23. 0M. F. Shi, J. C. Gerdeen, E. C. Aifantis, 1993, On finite deformation plasticity with directional softening Part II. Two-component model, Acta Mechanica, Vol. 101, pp. 69-80 https://doi.org/10.1007/BF01175598
  24. J. Ning, E. C. Aifantis, 1994, On anisotropic finite deformation plasticity Part I. A two-back stress model, Vol. 106, pp. 55-72 https://doi.org/10.1007/BF01300944
  25. A. Khan, S. Huang, 1995, Continuum Theory of Plasticity, John Wiley & Sons. Inc., New York, pp. 215-229
  26. N. Bonora, P. P. Milella P.P., 2001, Constitutive Modeling for Ductile Metals Behavior Incorporating Strain Rate, Temperature and Damage Mechanics, Int. J. Impact Engng., Vol. 26, pp. 53- 64 https://doi.org/10.1016/S0734-743X(01)00063-X
  27. N. Bonora, G. M. Newaz, 1998, Low Cycle Fatigue Life Estimation for Ductile Metals using a Nonlinear Continuum Dmage Mechanics Model, Int. J. Solids and Structures, Vol. 35 (16), pp. 1881- 1894 https://doi.org/10.1016/S0020-7683(97)00139-X
  28. M. A. Crisfield, 1997, Non-linear Finite Element Analysis of Solids and Structure, John Wiley & Sons Ltd., West Sussex, England, Vol. 2, pp. 46-55
  29. J. C. Christoffersen, J. W. Hutchinson, 1979, A Class of Phenomenological Corner Theories of Plasticity, J. Mech. Phys. Solids, Vol. 27(5, 6), pp. 465-487 https://doi.org/10.1016/0022-5096(79)90026-7
  30. S. J. Yun, 2005, Two Back Stress Hardening Models in Rate Independent Rigid Plasticity, Transactions of Materials Processing, Vol. 14, No. 4, pp. 327- 336 https://doi.org/10.5228/KSPP.2005.14.4.327