• Title/Summary/Keyword: 說苑

Search Result 1,845, Processing Time 0.412 seconds

Performance Measurement of The Hybrid Sheet with Dual Function of Electromagnetic-Shielding and Heat-Dissipating (전자파차폐 및 방열 기능을 가지는 하이브리드시트 성능측정)

  • Ahn, Sung-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.530-536
    • /
    • 2021
  • This paper presents the performance measurement results of a hybrid sheet with both shielding and heat dissipation functions developed by laminating copper mesh sheets and natural graphite sheets, which are used widely as electromagnetic shielding and heat-dissipating materials in electronic devices, without a pressure-sensitive adhesive (PSA). The results were compared by measuring the vertical and horizontal thermal conductivity with two other products to confirm the heat dissipation performance. A radiation emission test confirmed the electromagnetic shielding performance using a 3m electromagnetic anechoic chamber according to the CISPR 11 standard. In the case of vertical thermal conductivity, the proposed hybrid sheet was approximately 8.63 times higher than that of an aluminum sheet with heat dissipation coating and 18.7 times higher than that of a copper sheet laminated with artificial graphite with PSA. The proposed hybrid sheet was approximately 0.64 times that of the sheet, and approximately 1.76 times that of the heat-dissipated aluminum sheet in case of horizontal thermal conductivity. Measurements after applying each sheet in the same heat source revealed the proposed hybrid sheet to have the best heat dissipation performance. The radiation emission test showed that significantly radiation noise had been removed.

Inhibitory Effects of Ojeoksan on TNF-α-induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (TNF-α로 유도된 혈관내피세포의 혈관염증에 미치는 오적산(五積散)의 억제 효과)

  • Han, Byung Hyuk;Yoon, Jung Joo;Kim, Hye Yoom;Ahn, You Mee;Hong, Mi Hyeon;Son, Chan Ok;Na, Se Won;Lee, Yun Jung;Gang, Dae-Gil;Lee, Ho Sub
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.59-67
    • /
    • 2018
  • Objectives : Ojeoksan, originally recorded in an ancient Korean medicinal book named "Donguibogam" and has been used for the treatment of circulation disorder of blood which was called blood accumulation (血積) in Korean medicine. Therefore, this study was carried out to investigate the beneficial effect of OJS on vascular inflammation in HUVECs. Methods : We evaluated the effect of OJS on the expression of cell adhesion molecules and protective role in HUVEC stimulated by TNF-${\alpha}$ by using Western blot. Results : Pretreatment with OJS decreased the adhesion of HL-60 cells to TNF-${\alpha}$-induced HUVEC. OJS suppressed TNF-${\alpha}$-induced expression level of cell adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and endothelial cell selectin (E-selectin). Moreover, OJS significantly decreased TNF-${\alpha}$-induced production of intracellular reactive oxygen species (ROS); and inhibited the phosphorylation of $I{\kappa}B-{\alpha}$ in the cytoplasm compared to the experimental group. Pretreatment with OJS inhibited the trans-location of NF-${\kappa}B$ p65 to the nucleus. OJS also inhibited phosphorylation of MAPKs compared to the experimental group. OJS significantly increased the protein expression of Nrf2 and HO-1. Conclusions : Ojeoksan has a protective effect on vascular inflammation, and might be a potential therapeutic agent for early atherosclerosis.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

Design of High Efficiency Permanent Magnet Synchronous Generator for Application of Waste Heat Generation ORC System (폐열발전 ORC 시스템 적용을 위한 고효율 영구자석형 동기발전기 설계)

  • Yeong-Jung Kim;Seung-Jin Yang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • The power generation method using expensive diesel has operation problems such as high cost diesel generator and a lack of reserved power due to increase of power demand in some islands, requiring expansion of power generation facilities. To solve this problems, it is necessary to improve the efficiency of power generation facilities through an ORC(Organic Rankin Cycle) system application that uses waste heat as a heat source. Therefore, localized application technology of price competitive and highly reliable ORC power generation system is needed, and optimization technology of generators is having great effect, so this study performed two generator designs to get a high-efficiency generator with an optimized 30kW output. The comparison of simulation data for two designed models showed that a generator with SPM factor of 46.2% had an efficiency of 92.1% and a power ouput of about 23.2kW based on 12,000rpm, a generator with SPM factor of 44.46%, had a power output of 27.9kW and efficiency of 93.6% based on above rpm. For the verification of improved design model with SPM factor of 44.46%, the prototype test system with 110kW motor dynamometer was installed and got to the efficiency of 92.08% with conditions of the rated capacity 25kW at 12,000rpm, the test results of prototype generator showed the validity of generator design.

A Study on Derivation of Public Conflict Management Countermeasure in the Port Sector (항만분야 공공갈등 관리방안 도출에 관한 연구)

  • Ga-Hyun Kim;Se-Won Kim;Hye-Ryeong Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • Public conflicts in the port sector can cause additional social costs and delay the supply of port infrastructure, which can negatively affect local industries and national competitiveness. Although the importance of conflict management in the port sector is gradually increasing, there is still no systematic conflict management countermeasure. Therefore, in this study, the limitations of the current conflict management system in the port sector were considered, and a Delphi survey was conducted targeting experts and stakeholders in the port sector and conflict management. In addition, criteria for diagnosing conflicts in the port sector, causes of conflicts, proactive management measures, and ex post solutions were derived. The results of the Delphi survey analysis showed that the biggest causes of conflict were the absence of stakeholder opinion collection, consultation, and communication tools. Preliminary conflict management measures including a public deliberation process to collect local opinions and discuss development directions before deciding on specific issues, and ex post conflict resolution measures including investigation of causes of conflicts and objective personnel management in the process of preparing alternatives (e.g., securing reliability) were determined as the most important factors. In addition, based on the results obtained in this study, conflict management techniques for each phase of the port development project were presented. These findings are expected to be used as a useful reference material to reflect the port sector, which has not been included in the "Public Institution Conflict Management Manual (2016)" of the Office for Government Policy Coordination.

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

Effects of Mattress Material Change on Sleep Quality: An Exploratory Study (매트리스 소재변화가 수면의 질에 미치는 영향: 탐색적 연구)

  • Su-Eun Lim;Ki-Hyun Park;Young-Hwa Baek;Si-Woo Lee;Se-Jin Park;Ho-Ryong Yoo;Kwang-Ho Bae
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.95-106
    • /
    • 2022
  • This study evaluated the effects of latex mattresses on sleep quality and comfort. The participants were 11 healthy adults (five males, six females, mean age 37.7 years, mean height 167.8 cm, and mean weight 67.0 kg) without severe insomnia or other disease that could affect sleep, examined by a clinician. In their personal living space, participants slept on a spring mattress for 7 days, with their sleep registered using a wearable device (Fitbit), a sleep log, the Pittsburgh Sleep Quality Index (PSQI), the Insomnia Severity Index (ISI), and a satisfaction survey. The mattresses were then replaced with latex mattresses, which were used for 14 days. As a result, sleep time increased by 62.9 min on weekdays and 53.2 min on weekends after using the latex mattress, and a significant decrease, of 3.8, as seen on the ISI. As measured by the PSQI, the poor sleepers decreased from 10 to 7, but this was not statistically significant, and in the satisfaction survey, the comfort of the low back, neck, and shoulders was significantly increased. This suggests that changes to latex mattresses may positively affect objective and subjective sleep quality.

A case study for prediction of the natural ventilation force in a local long vehicle tunnel (장대도로터널의 자연환기력 예측 사례연구)

  • Lee, Chang-Woo;Kim, Sang-Hyun;Gil, Se-Won;Cho, Woo-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.395-401
    • /
    • 2009
  • One of the key design factors for the ventilation and safety system at extra long tunnel is the airflow velocity induced by the natural ventilation force. Despite of the importance, it has not been widely studied due to the complicated influencing variables and the relationship among them is difficult to quantify. At this moment none of the countries in the world defines its specific value on verified ground. It is also the case in Korea. The recent worldwide disasters by tunnel fires and demands for better air quality inside tunnel by users require the optimization of the tunnel ventilation system. This indicates why the natural ventilation force is necessary to be thoroughly studied. This paper aims at predicting the natural ventilation force at a 11 km-long tunnel which is in the stage of detailed design and will be the longest vehicle tunnel in Korea. The concept of barometric barrier which can provide the maximum possible natural ventilation force generated by the topographic effect on the external wind is applied to estimate the effect of wind pressure and the chimney effect caused by the in and outside temperature difference is also analyzed.

Evaluation of Cavity Characterization Using Infrared Thermal Images (적외선 이미지를 이용한 지하공동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won ;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.69-76
    • /
    • 2023
  • Cavity causes settlement and its remediation after an accident results in significant time and economic losses. This study aims to experimentally evaluate the prospect of using infrared camera to detect and measure underground subsidence. Emissivity is necessary to detect the energy emitted from an object and accurately assess temperature using an infrared camera. The emissivity in laboratory tests is fixed to evaluate a reasonable distance between the infrared camera and the object, and temperature values are assessed at various distances. In field experiments, the cavity of the field experiment is simulated using a PVC pipe with a diameter of 5 cm, artificially buried at depths of 5 and 25 cm from the surface. The infrared camera measurements are taken from 4 PM to 3 PM of the next day (a total of 23 h). The analysis included the time-series temperature distribution and the cooling rate index assessment, which represents the temperature change rate per unit of time. The results showed that various temperature trends are observed depending on the location of the subsidence. This study demonstrates that the infrared camera can be used to assess the condition of the subsurface.