• Title/Summary/Keyword: 說苑

Search Result 1,845, Processing Time 0.031 seconds

Evaluation on the Properties of Fire Retardant Surface Preparation Mortars (화재 지연형 바탕조정재의 기초물성 평가에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kim, Deuck-Mo;Song, Sung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.559-567
    • /
    • 2018
  • In the case of fire, surface treatment agents used in external insulation finishing methods are substances that are vulnerable to fire due to thin finishes and the combustion of polymers. In this study, it was expected that the performance of surface preparation mortars could be improved by using expandable graphite with excellent thermal performance. Experimental results showed that the mechanical properties of surface preparation mortar were improved by using the fly ash and silica fume. Surface treatment materials using expanded graphite have a characteristic of expanding when a fire occurs. It has been shown that heat-swellable surface treatment materials can reduce the penetration of heat sources into the surface of synthetic insulation.

A Case of Restless Legs Syndrome Patient with Numbness in Both Soles Using Gyejibokryeong-hwan (하지불안증후군으로 인한 양 발바닥 저림에 대한 한의 치험 1례)

  • Yang, Jung-yun;Kim, Se-won;Lee, Yu-jin;Cho, Ki-ho;Moon, Sang-kwan;Jung, Woo-sang;Kwon, Seung-won
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.270-278
    • /
    • 2019
  • Objective: In this case report, we address the case of a 68-year-old woman with numbness in both soles due to restless legs syndrome. Methods: A patient was treated with Korean medicine including herbal medication Gyejibokryeong-hwan during 73 days as an outpatient. We evaluated the improvements of symptoms by use of the International Restless Legs Scale (IRLS) and checking subjective symptoms of patient. Results: After 73 days of Korean medicine treatment, there was improvement in patient's symptoms. IRLS score improved from 12 to 8, and subjective symptoms improved to about 30% compared to the first time. Conclusions: This study suggested that Korean medicine treatments might be effective in RLS patient recovery.

A Study of Nano-particle Distributions near a Heated Substrate using Molecular Dynamics Simulations (분자동역학을 이용한 열원 주변에서의 나노입자의 분포에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2019
  • Since nanofluids (NFs), which are a mixture of a small amount of nanoparticles and a bulk liquid solvent, were first proposed by Stephen Choi at the Argonne National Lab in 1995, they have been considered for use in many technical studies of power cooling systems and their practical application due to their high thermal conductivity and heat transfer coefficients compared to conventional coolants. Although nanofluids are a well-known form of engineering fluid that show great promise for use in future cooling systems, their underlying physics as demonstrated in experiments remain unclear. One proven method of determining the heat transfer performance of nanofluids is measuring the concentration of nanoparticles in a mixture. However, it is experimentally inefficient to build testbeds to systematically observe particle distributions on a nanoscale. In this paper, we demonstrate the distribution of nanoparticles under a temperature gradient in a solution using molecular dynamics simulations. First, temperature profiles based on substrate temperature are introduced. Following this, the radial pair distribution functions of pairs of nanoparticles, solvents, and substrates are calculated. Finally, the distribution of nanoparticles in different heating regions is determined.

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Effect of Additional Cu and Natural Aging Treatment on Thermal Diffusivity in the Al-Mg-Si Alloy (Al-Mg-Si 합금에서 Cu 첨가와 자연시효 열처리가 열확산도에 미치는 영향)

  • Kim, Yu-Mi;Choi, Se-Weon
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.528-534
    • /
    • 2021
  • To confirm effects of natural and artificial aging of precipitate on thermal diffusivity and hardness, the studied Al-Mg-Si alloy were manufactured by gravity casting method with 0.6 wt% and 1.0 wt% additional Cu element. The samples were used for measuring thermal diffusivity and hardness. The addition of Cu, promoted by intermediates such as Q'' and θ'' phases, contributing to the improvement of hardness and high-temperature thermal diffusivity. The natural aging decreased the hardness of the Al-Mg-Si-Cu alloys with increasing time, but did not affect the thermal diffusivity.

Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings (실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향)

  • Kwon, Eui Pyo;Kim, Se Woong;Lee, Jong Kweon
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System (중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구)

  • Jae-Yeob Song;Byung-Cheon Ahn
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

Thermal load analysis of tank culture system for applying seawater source heat pump (육상 수조식 양식장의 해수 열원 히트펌프 시스템 적용을 위한 열부하 분석)

  • Min-Gi YOON;Tae-Hoon KIM;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.

Numerical Simulation of Ground Expansion Induced by Pulse Discharge Technology (펄스 방전 기술에 의한 지반 확공 현상 수치해석 모사)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Seon-Ju;Cho, Gyu-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.25-34
    • /
    • 2010
  • In the present paper, a numerical study was carried out to simulate ground expansion induced by an application of pulse discharge technology. Based on laboratory pulse discharge tests, the characteristics of shockwave were investigated, and then the laboratory tests were numerical1y simulated using underwater explosion model implemented in a coupled acoustic-structural finite element analysis. In addition, for clayey soils, the expansion of ground was also studied using soil properties obtained from empirical correlations with SPT N values. It was found that the calculation results well agreed with the field test results.