• Title/Summary/Keyword: β-catenin

Search Result 161, Processing Time 0.026 seconds

The PPLA Motif of Glycogen Synthase Kinase 3β Is Required for Interaction with Fe65

  • Lee, Eun Jeoung;Hyun, Sunghee;Chun, Jaesun;Shin, Sung Hwa;Lee, Kyung Eun;Yeon, Kwang Hum;Park, Tae Yoon;Kang, Sang Sun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.100-105
    • /
    • 2008
  • Glycogen synthase kinase $3{\beta}$ (GSK $3{\beta}$) is a serine/threonine kinase that phosphorylates substrates such as ${\beta}$-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK $3{\beta}$ is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK $3{\beta}$ catalytic domain also contains a putative WW domain binding motif ($^{371}PPLA^{374}$), and we observed, using a pull down approach and co-immunoprecipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK $3{\beta}$ and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK $3{\beta}$. Finally, in transient transfection assays interaction of GSK $3{\beta}$ (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK $3{\beta}$ AALA mutant ($^{371}AALA^{374}$) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK $3{\beta}$ AALA mutant was significantly reduced compared to that of GSK $3{\beta}$ wild type. Thus, our observations indicate that GSK $3{\beta}$ binds to Fe65 through its $^{371}PPLA^{374}$ motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK $3{\beta}$.

Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구)

  • Lee Sung Yeoul;Kim Won Ill;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1019-1030
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the growth of human lung carcinoma A549 cells. Results obtained are as fellow; AEPG treatment resulted in the inhibition of the cell viability of A549 cells in a concentration-dependent manner. Upon treatment with AEPG, A549 cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that AEPG increased populations of apoptotic-sub G1 phase. Western blot and RT-PCR analyses indicated that the expressions of Bcl-2 was down-regulated but Bax was up-regulated in AEPG-treated A549 cells. AEPG-induced apoptotis of A549 cells was associated with rroteolytic cleavage and activation of caspase-3, release of cytochrome c from mitochondria into cytosol and down-regulation of Akt and phospho-Akt proteins in a dose-dependent manner. Induction of apoptosis by AEPG treatment was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ 1. AEPG treatment inhibited the levels of cyclooxygenases protein of A549 cells, which was associated with the inhibition of prostaglandin E2 accumulation in a concentration-dependent fashion. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress

  • Yi, Caixia;Yu, Zhihai;Sun, Xin;Zheng, Xi;Yang, Shuangya;Liu, Hengchuan;Song, Yi;Huang, Xiao
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2022
  • Drug self-delivery systems can easily realize combination drug therapy and avoid carrier-induced toxicity and immunogenicity because they do not need non-therapeutic carrier materials. So, designing appropriate drug self-delivery systems for specific diseases can settle most of the problems existing in traditional drug delivery systems. Retinal pigment epithelium is very important for the homeostasis of retina. However, it is vulnerable to oxidative damage and difficult to repair. Worse still, the antioxidants can hardly reach the retina by non-invasive administration routes due to the ocular barriers. Herein, the targeted group (folic acid) and antioxidant (melatonin) have been grafted on the surface of ZnO quantum dots to fabricate a new kind of drug self-delivery systems as a protectant via eyedrops. In this study, the negative nanoparticles with size ranging in 4~6 nm were successfully synthesized. They could easily and precisely deliver drugs to retinal pigment epithelium via eyedrops. And they realized acid degradation to controlled release of melatonin and zinc in retinal pigment epithelium cells. Consequently, the structure of retinal pigment epithelium cells were stabilized according to the expression of ZO-1 and β-catenin. Moreover, the antioxidant capacity of retinal pigment epithelium were enhanced both in health mice and photic injury mice. Therefore, such new drug self-delivery systems have great potential both in prevention and treatment of oxidative damage induced retinal diseases.

Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner

  • Choi, Ye Seul;Cho, Hee Jeong;Jung, Hye Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Gastric cancer stem cells (GCSCs) are a major cause of radioresistance and chemoresistance in gastric cancer (GC). Therefore, targeting GCSCs is regarded as a powerful strategy for the effective treatment of GC. Atorvastatin is a widely prescribed cholesterol-lowering drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting enzyme in the mevalonate pathway. The anticancer activity of atorvastatin, a repurposed drug, is being investigated; however, its therapeutic effect and molecular mechanism of action against GCSCs remain unknown. In this study, we evaluated the anticancer effects of atorvastatin on MKN45-derived GCSCs. Atorvastatin significantly inhibited the proliferative and tumorsphere-forming abilities of MKN45 GCSCs in a mevalonate pathway-independent manner. Atorvastatin induced cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade. Furthermore, atorvastatin exerted an antiproliferative effect against MKN45 GCSCs by inhibiting the expression of cancer stemness markers, such as CD133, CD44, integrin α6, aldehyde dehydrogenase 1A1, Oct4, Sox2, and Nanog, through the downregulation of β-catenin, signal transducer and activator of transcription 3, and protein kinase B activities. Additionally, the combined treatment of atorvastatin and sorafenib, a multi-kinase targeted anticancer drug, synergistically suppressed not only the proliferation and tumorsphere formation of MKN45 GCSCs but also the in vivo tumor growth in a chick chorioallantoic membrane model implanted with MKN45 GCSCs. These findings suggest that atorvastatin can therapeutically eliminate GCSCs.

Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity

  • Cho-Won, Kim;Hong, Kyu, Lee;Min-Woo, Nam;Youngdong, Choi;Kyung-Chul, Choi
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.935-949
    • /
    • 2022
  • Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)- related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.

Chemoquiescence with Molecular Targeted Ablation of Cancer Stem Cells in Gastrointestinal Cancers

  • Jong-Min Park;Young-Min Han;Migyeong Jeong;Eun Jin Go;Napapan Kangwan;Woo Sung Kim;Ki Baik Hahm
    • Journal of Digestive Cancer Research
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The abundance of multi-drug resistance ATPase binding cassette and deranged self-renewal pathways shown in cancer stem cells (CSCs) played a crucial role in tumorigenesis, tumor resistance, tumor recurrence, and tumor metastasis. Therefore, elucidation of CSCs biology can improve diagnosis, enable targeted treatment, and guide the follow up of GI cancer patients. In order to achieve chemoquiescence, seizing cancer through complete ablation of CSCs, CSCs are rational targets for the design of interventions that will enhance responsiveness to traditional therapeutic strategies and contribute in the prevention of local recurrence as well as metastasis. However, current cancer treatment strategies fail to either detect or differentiate the CSCs from their non-tumorigenic progenies mostly due to the absence of specific biomarkers and potent agents to kill CSCs. Recent advances in knowledge of CSCs enable to produce several candidates to ablate CSCs in gastrointestinal (GI) cancers, especially cancers originated from inflammation-driven mutagenesis such as Barrett's esophagus (BE), Helicobacter pylori-associated gastric cancer, and colitis-associated cancer (CAC). Our research teams elucidated through revisiting old drugs that proton pump inhibitor (PPI) and potassium competitive acid blocker (p-CAB) beyond authentic acid suppression, chloroquine for autophage inhibition, sonic hedgehog (SHH) inhibitors, and Wnt/β-catenin/NOTCH inhibitor can ablate CSCs specifically and efficiently. Furthermore, nanoformulations of these molecules could provide an additional advantage for more selective targeting of the pathways existing in CSCs just like current molecular targeted therapeutics and sustained action, while normal stem cells intact. In this review article, the novel approach specifically to ablate CSCs existing in GI cancers will be introduced with the introduction of explored mode of action.

  • PDF

Oral Administration of Lactilactobacillus curvatus LB-P9 Promotes Hair Regeneration in Mice

  • Mikyung Song;Jaeseok Shim;Kyoungsub Song
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.204-215
    • /
    • 2024
  • This study was designed to examine the effect of Lactilactobacillus curvatus LB-P9 on hair regeneration. The treatment of LB-P9 conditioned medium increased the proliferation of both hair follicle dermal papilla cells and hair germinal matrix cells (hGMCs). Moreover, the expression levels of hair growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 7 were significantly elevated in hGMCs co-cultured with LB-P9. After time-synchronized depilation, mice were orally administered with either 4×107 colony forming unit (CFU) of LB-P9 (low dose) or 4×108 CFU of LB-P9 (high dose), once daily for 4 weeks. Compared with the vehicle (phosphate-buffered saline)-administrated group, the LB-P9-treated groups exhibited accelerated hair regrowth rate and enhanced hair thickness in a dose-dependent manner. Supporting this observation, both hair follicle numbers and the dermal thickness in skin tissues of the LB-P9-treated groups were increased, compared to those of the vehicle-treated group. These results might be explained by the increased level of β-catenin and number of hair follicle stem cells (CD34+ CD49f+ cells) in the skin tissues of mice administered with LB-P9, compared to the vehicle-treated mice. Also, increased serum levels of hair growth factors such as VEGF and insulin-like growth factor-1, and superoxide dismutase were found in the LB-P9-treated groups, compared to those of the vehicle-treated group. Taken together, these results might demonstrate that the oral administration of LB-P9 promotes hair regeneration by the enhancement of dermal papilla proliferation through the stimulation of hair growth factor production.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes

  • Yawut, Natpaphan;Kaowinn, Sirichat;Cho, Il-Rae;Budluang, Phatcharaporn;Kim, Seonghye;Kim, Suhkmann;Youn, So Eun;Koh, Sang Seok;Chung, Young-Hwa
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.