DOI QR코드

DOI QR Code

Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity

  • Cho-Won, Kim (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hong, Kyu, Lee (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Min-Woo, Nam (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Youngdong, Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kyung-Chul, Choi (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • 투고 : 2022.06.28
  • 심사 : 2022.09.30
  • 발행 : 2022.12.31

초록

Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)- related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.

키워드

과제정보

This work was supported by the Basic Science Research Program (2020R1A2C2006060) and the Global Research and Development Center (GRDC) Program (2017K1A4A3014959) through the National Research Foundation (NRF) of Korea, funded by the Ministry of Science and ICT. This work was also supported by the Sejong Fellowship of National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2021R1C1C2093998).

참고문헌

  1. Adimoolam, S., Lin, C.X., and Ford, J.M. (2001). The p53-regulated cyclindependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J. Biol. Chem. 276, 25813-25822. https://doi.org/10.1074/jbc.M102240200
  2. Aman, A. and Piotrowski, T. (2008). Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev. Cell 15, 749-761. https://doi.org/10.1016/j.devcel.2008.10.002
  3. Barzegar Behrooz, A., Syahir, A., and Ahmad, S. (2019). CD133: beyond a cancer stem cell biomarker. J. Drug Target. 27, 257-269. https://doi.org/10.1080/1061186x.2018.1479756
  4. Behrooz, A.B. and Syahir, A. (2021). Could we address the interplay between CD133, Wnt/beta-catenin, and TERT signaling pathways as a potential target for glioblastoma therapy? Front. Oncol. 11, 642719.
  5. Bhardwaj, B., Bhardwaj, G., and Lau, J.Y. (1999). Expression of p21 and p27 in hepatoma cell lines with different p53 gene profile. J. Hepatol. 31, 386.
  6. Bielenberg, D.R. and Zetter, B.R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer J. 21, 267-273. https://doi.org/10.1097/PPO.0000000000000138
  7. Bisteau, X., Caldez, M.J., and Kaldis, P. (2014). The complex relationship between liver cancer and the cell cycle: a story of multiple regulations. Cancers (Basel) 6, 79-111. https://doi.org/10.3390/cancers6010079
  8. Bosmuller, H., Pfefferle, V., Bittar, Z., Scheble, V., Horger, M., Sipos, B., and Fend, F. (2018). Microvessel density and angiogenesis in primary hepatic malignancies: Differential expression of CD31 and VEGFR-2 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol. Res. Pract. 214, 1136-1141. https://doi.org/10.1016/j.prp.2018.06.011
  9. Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128-134. https://doi.org/10.1038/nrc.2017.118
  10. Carvalho, J.R., Fortunato, I.C., Fonseca, C.G., Pezzarossa, A., Barbacena, P., Dominguez-Cejudo, M.A., Vasconcelos, F.F., Santos, N.C., Carvalho, F.A., and Franco, C.A. (2019). Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. Elife 8, e45853.
  11. Chang, F., Lee, J.T., Navolanic, P.M., Steelman, L.S., Shelton, J.G., Blalock, W.L., Franklin, R.A., and McCubrey, J.A. (2003). Involvement of PI3K/ Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603. https://doi.org/10.1038/sj.leu.2402824
  12. Clarke, H., Dhillo, W.S., and Jayasena, C.N. (2015). Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol. Metab. (Seoul) 30, 124-141. https://doi.org/10.3803/EnM.2015.30.2.124
  13. Colecchia, A., Schiumerini, R., Cucchetti, A., Cescon, M., Taddia, M., Marasco, G., and Festi, D. (2014). Prognostic factors for hepatocellular carcinoma recurrence. World J. Gastroenterol. 20, 5935-5950. https://doi.org/10.3748/wjg.v20.i20.5935
  14. Delire, B., Henriet, P., Lemoine, P., Leclercq, I.A., and Starkel, P. (2018). Chronic liver injury promotes hepatocarcinoma cell seeding and growth, associated with infiltration by macrophages. Cancer Sci. 109, 2141-2152. https://doi.org/10.1111/cas.13628
  15. Dhanasekaran, R., Bandoh, S., and Roberts, L.R. (2016). Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res. 5, F1000 Faculty Rev-879.
  16. Eferl, R., Ricci, R., Kenner, L., Zenz, R., David, J.P., Rath, M., and Wagner, E.F. (2003). Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181-192. https://doi.org/10.1016/S0092-8674(03)00042-4
  17. Fan, B., Yu, Y., and Zhang, Y. (2015). PI3K-Akt1 expression and its significance in liver tissues with chronic fluorosis. Int. J. Clin. Exp. Pathol. 8, 1226-1236.
  18. Ghanekar, A., Ahmed, S., Chen, K., and Adeyi, O. (2013). Endothelial cells do not arise from tumor-initiating cells in human hepatocellular carcinoma. BMC Cancer 13, 485.
  19. Global Burden of Disease Liver Cancer Collaboration, Akinyemiju, T., Abera, S., Ahmed, M., Alam, N., Alemayohu, M.A., Allen, C., Al-Raddadi, R., Alvis-Guzman, N., Amoako, Y., et al. (2017). The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease study 2015. JAMA Oncol. 3, 1683-1691. https://doi.org/10.1001/jamaoncol.2017.3055
  20. Glumac, P.M. and LeBeau, A.M. (2018). The role of CD133 in cancer: a concise review. Clin. Transl. Med. 7, 18.
  21. Go, R.E., Kim, C.W., Jeon, S.Y., Byun, Y.S., Jeung, E.B., Nam, K.H., and Choi, K.C. (2017). Fludioxonil induced the cancer growth and metastasis via altering epithelial-mesenchymal transition via an estrogen receptordependent pathway in cellular and xenografted breast cancer models. Environ. Toxicol. 32, 1439-1454. https://doi.org/10.1002/tox.22337
  22. He, S. and Tang, S. (2020). WNT/beta-catenin signaling in the development of liver cancers. Biomed. Pharmacother. 132, 110851.
  23. Ikeguchi, M., Hirooka, Y., and Kaibara, N. (2003). Quantitative reverse transcriptase polymerase chain reaction analysis for KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 129, 531-535. https://doi.org/10.1007/s00432-003-0469-z
  24. Imamura, H., Matsuyama, Y., Tanaka, E., Ohkubo, T., Hasegawa, K., Miyagawa, S., Sugawara, Y., Minagawa, M., Takayama, T., Kawasaki, S., et al. (2003). Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J. Hepatol. 38, 200-207.
  25. Kalluri, R. and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420-1428. https://doi.org/10.1172/JCI39104
  26. Kauffman, A.S. (2009). Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides 30, 83-93. https://doi.org/10.1016/j.peptides.2008.06.014
  27. Kim, C.W. and Choi, K.C. (2021). Potential roles of iridoid glycosides and their underlying mechanisms against diverse cancer growth and metastasis: do they have an inhibitory effect on cancer progression? Nutrients 13, 2974. https://doi.org/10.3390/nu13010075
  28. Kim, C.W., Go, R.E., Lee, G.A., Kim, C.D., Chun, Y.J., and Choi, K.C. (2016a). Immortalization of human corneal epithelial cells using simian virus 40 large T antigen and cell characterization. J. Pharmacol. Toxicol. Methods 78, 52-57. https://doi.org/10.1016/j.vascn.2015.11.005
  29. Kim, C.W., Hwang, K.A., and Choi, K.C. (2016b). Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelialmesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine 23, 1787-1796. https://doi.org/10.1016/j.phymed.2016.10.016
  30. Kim, C.W., Kim, C.D., and Choi, K.C. (2017a). Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test. J. Pharmacol. Toxicol. Methods 88, 130-139. https://doi.org/10.1016/j.vascn.2017.08.005
  31. Kim, C.W., Lee, H.M., Lee, K., Kim, B., Lee, M.Y., and Choi, K.C. (2017b). Effects of cigarette smoke extracts on cell cycle, cell migration and endocrine activity in human placental cells. Reprod. Toxicol. 73, 8-19. https://doi.org/10.1016/j.reprotox.2017.07.010
  32. Kummar, S. and Shafi, N.Q. (2003). Metastatic hepatocellular carcinoma. Clin. Oncol. (R. Coll. Radiol.) 15, 288-294. https://doi.org/10.1016/S0936-6555(03)00067-0
  33. Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
  34. Leal-Esteban, L.C. and Fajas, L. (2020). Cell cycle regulators in cancer cell metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165715.
  35. Lee, H.K., Shin, H.J., Koo, J., Kim, T.H., Kim, C.W., Go, R.E., Seong, Y.H., Park, J.E., and Choi, K.C. (2021). Blockade of transforming growth factor beta2 by anti-sense oligonucleotide improves immunotherapeutic potential of IL-2 against melanoma in a humanized mouse model. Cytotherapy 23, 599-607. https://doi.org/10.1016/j.jcyt.2021.01.003
  36. Lee, J.H., Miele, M.E., Hicks, D.J., Phillips, K.K., Trent, J.M., Weissman, B.E., and Welch, D.R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731-1737. https://doi.org/10.1093/jnci/88.23.1731
  37. Lee, J.H. and Welch, D.R. (1997a). Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int. J. Cancer 71, 1035-1044. https://doi.org/10.1002/(SICI)1097-0215(19970611)71:6<1035::AID-IJC20>3.0.CO;2-B
  38. Lee, J.H. and Welch, D.R. (1997b). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 57, 2384-2387.
  39. Liang, J., Zubovitz, J., Petrocelli, T., Kotchetkov, R., Connor, M.K., Han, K., Lee, J.H., Ciarallo, S., Catzavelos, C., Beniston, R., et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27- mediated G1 arrest. Nat. Med. 8, 1153-1160. https://doi.org/10.1038/nm761
  40. Liou, G.Y. (2019). CD133 as a regulator of cancer metastasis through the cancer stem cells. Int. J. Biochem. Cell Biol. 106, 1-7. https://doi.org/10.1016/j.biocel.2018.10.013
  41. Liu, X., Liao, W., Yuan, Q., Ou, Y., and Huang, J. (2015). TTK activates Akt and promotes proliferation and migration of hepatocellular carcinoma cells. Oncotarget 6, 34309-34320. https://doi.org/10.18632/oncotarget.5295
  42. Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., Lencioni, R., Koike, K., Zucman-Rossi, J., and Finn, R.S. (2021). Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7, 6.
  43. Loh, C.Y., Chai, J.Y., Tang, T.F., Wong, W.F., Sethi, G., Shanmugam, M.K., Chong, P.P., and Looi, C.Y. (2019). The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8, 1118.
  44. Lu, Y., Lin, N., Chen, Z., and Xu, R. (2015). Hypoxia-induced secretion of platelet-derived growth factor-BB by hepatocellular carcinoma cells increases activated hepatic stellate cell proliferation, migration and expression of vascular endothelial growth factor-A. Mol. Med. Rep. 11, 691-697. https://doi.org/10.3892/mmr.2014.2689
  45. McGrath, N.A., Fu, J., Gu, S.Z., and Xie, C. (2020). Targeting cancer stem cells in cholangiocarcinoma (Review). Int. J. Oncol. 57, 397-408. https://doi.org/10.3892/ijo.2020.5074
  46. Mittal, V. (2018). Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 13, 395-412. https://doi.org/10.1146/annurev-pathol-020117-043854
  47. Miyazaki, K., Oyanagi, J., Hoshino, D., Togo, S., Kumagai, H., and Miyagi, Y. (2019). Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix. Sci. Rep. 9, 292.
  48. Morse, M.A., Sun, W., Kim, R., He, A.R., Abada, P.B., Mynderse, M., and Finn, R.S. (2019). The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res. 25, 912-920. https://doi.org/10.1158/1078-0432.ccr-18-1254
  49. Oakley, A.E., Clifton, D.K., and Steiner, R.A. (2009). Kisspeptin signaling in the brain. Endocr. Rev. 30, 713-743. https://doi.org/10.1210/er.2009-0005
  50. Ogunwobi, O.O., Harricharran, T., Huaman, J., Galuza, A., Odumuwagun, O., Tan, Y., Ma, G.X., and Nguyen, M.T. (2019). Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol. 25, 2279-2293. https://doi.org/10.3748/wjg.v25.i19.2279
  51. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., et al. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613-617. https://doi.org/10.1038/35079135
  52. Pandit, H., Li, Y., Li, X., Zhang, W., Li, S., and Martin, R.C.G. (2018). Enrichment of cancer stem cells via beta-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer 18, 783.
  53. Perugorria, M.J., Olaizola, P., Labiano, I., Esparza-Baquer, A., Marzioni, M., Marin, J.J.G., Bujanda, L., and Banales, J.M. (2019). Wnt-betacatenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 16, 121-136. https://doi.org/10.1038/s41575-018-0075-9
  54. Puisieux, A., Brabletz, T., and Caramel, J. (2014). Oncogenic roles of EMTinducing transcription factors. Nat. Cell Biol. 16, 488-494. https://doi.org/10.1038/ncb2976
  55. Qian, H., Yang, L., Zhao, W., Chen, H., and He, S. (2018). A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp. Ther. Med. 16, 2881-2888. https://doi.org/10.3892/etm.2018.6553
  56. Rathod, K., Sheth, R., Shah, P., and Rege, S. (2000). Active contrast extravasation in spontaneous rupture of hepatocellular carcinoma: a rare CT finding. J. Postgrad. Med. 46, 35-36.
  57. Rivadeneira, D.B., Mayhew, C.N., Thangavel, C., Sotillo, E., Reed, C.A., Grana, X., and Knudsen, E.S. (2010). Proliferative suppression by CDK4/6 inhibition: complex function of the retinoblastoma pathway in liver tissue and hepatoma cells. Gastroenterology 138, 1920-1930. https://doi.org/10.1053/j.gastro.2010.01.007
  58. Schmid, K., Wang, X., Haitel, A., Sieghart, W., Peck-Radosavljevic, M., Bodingbauer, M., Rasoul-Rockenschaub, S., and Wrba, F. (2007). KiSS-1 overexpression as an independent prognostic marker in hepatocellular carcinoma: an immunohistochemical study. Virchows Arch. 450, 143-149. https://doi.org/10.1007/s00428-006-0352-9
  59. Shengbing, Z., Feng, L.J., Bin, W., Lingyun, G., and Aimin, H. (2009). Expression of KiSS-1 gene and its role in invasion and metastasis of human hepatocellular carcinoma. Anat. Rec. (Hoboken) 292, 1128-1134. https://doi.org/10.1002/ar.20950
  60. Stathaki, M., Stamatiou, M.E., Magioris, G., Simantiris, S., Syrigos, N., Dourakis, S., Koutsilieris, M., and Armakolas, A. (2019). The role of kisspeptin system in cancer biology. Crit. Rev. Oncol. Hematol. 142, 130-140. https://doi.org/10.1016/j.critrevonc.2019.07.015
  61. Takeda, A., Stoeltzing, O., Ahmad, S.A., Reinmuth, N., Liu, W., Parikh, A., Fan, F., Akagi, M., and Ellis, L.M. (2002). Role of angiogenesis in the development and growth of liver metastasis. Ann. Surg. Oncol. 9, 610-616. https://doi.org/10.1007/BF02574475
  62. Terasawa, E., Guerriero, K.A., and Plant, T.M. (2013). Kisspeptin and puberty in mammals. Adv. Exp. Med. Biol. 784, 253-273. https://doi.org/10.1007/978-1-4614-6199-9_12
  63. Tiwari, N., Gheldof, A., Tatari, M., and Christofori, G. (2012). EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol. 22, 194-207. https://doi.org/10.1016/j.semcancer.2012.02.013
  64. Wang, Z., Cui, X., Hao, G., and He, J. (2021). Aberrant expression of PI3K/ AKT signaling is involved in apoptosis resistance of hepatocellular carcinoma. Open Life Sci. 16, 1037-1044. https://doi.org/10.1515/biol-2021-0101
  65. Wen, X., Wu, Y., Awadasseid, A., Tanaka, Y., and Zhang, W. (2020). New advances in canonical Wnt/beta-catenin signaling in cancer. Cancer Manag. Res. 12, 6987-6998.
  66. Wu, Y. and Zhou, B.P. (2008). New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim. Biophys. Sin. (Shanghai) 40, 643-650. https://doi.org/10.1111/j.1745-7270.2008.00443.x
  67. Yang, J. and Weinberg, R.A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818-829. https://doi.org/10.1016/j.devcel.2008.05.009
  68. Yang, J.D., Nakamura, I., and Roberts, L.R. (2011). The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin. Cancer Biol. 21, 35-43. https://doi.org/10.1016/j.semcancer.2010.10.007
  69. Yoon, S., Shin, B., and Woo, H.G. (2021). Endoplasmic reticulum stress induces CAP2 expression promoting epithelial-mesenchymal transition in liver cancer cells. Mol. Cells 44, 569-579. https://doi.org/10.14348/molcells.2021.0031
  70. Yuan, K., Xie, K., Lan, T., Xu, L., Chen, X., Li, X., Liao, M., Li, J., Huang, J., Zeng, Y., et al. (2020). TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of beta-catenin. Cell Death Differ. 27, 1355-1368. https://doi.org/10.1038/s41418-019-0421-7
  71. Zhang, T., Zhang, L., Gao, Y., Wang, Y., Liu, Y., Zhang, H., Wang, Q., Hu, F., Li, J., Tan, J., et al. (2021). Role of aneuploid circulating tumor cells and CD31(+)CD31(+) circulating tumor endothelial cells in predicting and monitoring anti-angiogenic therapy efficacy in advanced NSCLC. Mol. Oncol. 15, 2891-2909. https://doi.org/10.1002/1878-0261.13092
  72. Zhang, Y.Y., Kong, L.Q., Zhu, X.D., Cai, H., Wang, C.H., Shi, W.K., Cao, M.Q., Li, X.L., Li, K.S., Zhang, S.Z., et al. (2018). CD31 regulates metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma via the ITGB1-FAK-Akt signaling pathway. Cancer Lett. 429, 29-40. https://doi.org/10.1016/j.canlet.2018.05.004
  73. Zhu, G.J., Song, P.P., Zhou, H., Shen, X.H., Wang, J.G., Ma, X.F., Gu, Y.J., Liu, D.D., Feng, A.N., Qian, X.Y., et al. (2018). Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, beta-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol. Lett. 15, 3472-3481.
  74. Zhu, X.D., Tang, Z.Y., and Sun, H.C. (2020). Targeting angiogenesis for liver cancer: past, present, and future. Genes Dis. 7, 328-335. https://doi.org/10.1016/j.gendis.2020.03.010