• Title/Summary/Keyword: {TEX}$C^{*}${/TEX}-integral

Search Result 371, Processing Time 0.022 seconds

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$

  • Ryu, K.-S;Yoo, S.-C
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.791-802
    • /
    • 2000
  • In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8]. In this paper, we will prove the stability theorems of the operator-valued function space integral over paths in abstract Wiener space $C_0(B)$.

  • PDF

The subtle effect of integral scale on the drag of a circular cylinder in turbulent cross flow

  • Younis, Nibras;Ting, David S.K.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.463-480
    • /
    • 2012
  • The effects of Reynolds number (Re), freestream turbulence intensity (Tu) and integral length scale (${\Lambda}$) on the drag coefficient ($C_d$) of a circular cylinder in cross flow were experimentally studied for $6.45{\times}10^3$ < Re < $1.82{\times}10^4$. With the help of orificed plates, Tu was fixed at approximately 0.5%, 5%, 7% and 9% and the normalized integral length scale (L/D) was varied from 0.35 to 1.05. Our turbulent results confirmed the general trend of decreasing $C_d$ with increasing Tu. The effectiveness of Tu in reducing $C_d$ is found to lessen with increasing ${\Lambda}$/D. Most interestingly, freestream turbulence of low Tu (${\approx}5%$) and large ${\Lambda}$/D (${\approx}1.05$) can increase the $C_d$ above the corresponding smooth flow value.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS

  • Chutia, Duranta;Haloi, Rajib
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.757-780
    • /
    • 2022
  • In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights ω, ρ, φ and ψ to hold the following weak type modular inequality $${\mathcal{U}}^{-1}\({\int_{{\mid}{\mathcal{I}}f{\mid}>{\gamma}}}\;{\mathcal{U}}({\gamma}{\omega}){\rho}\){\leq}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}(C{\mid}f{\mid}{\phi}){\psi}\),$$ where ${\mathcal{I}}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality $${\omega}\(\{{\left|{\mathcal{I}}f\right|}>{\gamma}\}\){\leq}{\mathcal{U}}{\circ}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}\(\frac{C{\mid}f{\mid}{\phi}}{{\gamma}}\){\psi}\).$$ Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC FUNCTION

  • Rao, Snehal B.;Patel, Amit D.;Prajapati, Jyotindra C.;Shukla, Ajay K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.303-317
    • /
    • 2013
  • In present paper, we obtain functions $R_t(c,{\nu},a,b)$ and $R_t(c,-{\mu},a,b)$ by using generalized hypergeometric function. A recurrence relation, integral representation of the generalized hypergeometric function $_2R_1(a,b;c;{\tau};z)$ and some special cases have also been discussed.

On a Certain Integral Operator

  • Porwal, Saurabh;Aouf, Muhammed Kamal
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • The purpose of the present paper is to investigate mapping properties of an integral operator in which we show that the function g defined by $$g(z)=\{\frac{c+{\alpha}}{z^c}{\int}_{o}^{z}t^{c-1}(D^nf)^{\alpha}(t)dt\}^{1/{\alpha}}$$. belongs to the class $S(A,B)$ if $f{\in}S(n,A,B)$.

INTEGRAL BASES OVER p-ADIC FIELDS

  • Zaharescu, Alexandru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.509-520
    • /
    • 2003
  • Let p be a prime number, $Q_{p}$ the field of p-adic numbers, K a finite extension of $Q_{p}$, $\bar{K}}$ a fixed algebraic closure of K and $C_{p}$ the completion of K with respect to the p-adic valuation. Let E be a closed subfield of $C_{p}$, containing K. Given elements $t_1$...,$t_{r}$ $\in$ E for which the field K($t_1$...,$t_{r}$) is dense in E, we construct integral bases of E over K.

A study on the Mechanical Properties of the Braking Disk due to the Temperature Change(I) (철도차량용 제동디스크의 온도 변화 측정 및 물성치 변화에 관한 연구(I))

  • Kim Jae-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chun-an. As a result of measuring, we determine the temperature of test(tensile and J-integral) at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C$ and $300^{\circ}C$. In the test, the material values are decreased by the increasing of the temperature. But ratio of decreasing is the largest at $200^{\circ}C$, the tensile test value is decreased about $10\%$ and the J-integral test value is decreased $30\%$. The mechanical properties of this material are mostly changed at $200^{\circ}C$.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.