• Title/Summary/Keyword: {\omega}-hyponormal$

Search Result 5, Processing Time 0.017 seconds

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO $\omega$-HYPONORMAL OPERATORS

  • Cha, Hyung Koo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.273-277
    • /
    • 2003
  • The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then $A^{\ast}= X. In this paper, we show that if A is $\omega$-hyponormal and $B^{\ast}$ is invertible $\omega$-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^{\ast}X = XB^{\ast}$.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

ESSENTIAL SPECTRA OF ${\omega}-HYPONORMAL$ OPERATORS

  • Cha, Hyung-Koo;Kim, Jae-Hee;Lee, Kwang-Il
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.217-223
    • /
    • 2003
  • Let $\cal{K}$ be the extension Hilbert space of a Hilbert space $\cal{H}$ and let $\Phi$ be the faithful $\ast$-representation of $\cal{B}(\cal{H})$ on $\cal{k}$. In this paper, we show that if T is an irreducible ${\omega}-hyponormal$ operators such that $ker(T)\;{\subset}\;ker(T^{*})$ and $T^{*}T\;-\;TT^{\ast}$ is compact, then $\sigma_{e}(T)\;=\;\sigma_{e}(\Phi(T))$.

  • PDF

ON WEIGHTED WEYL SPECTRUM, II

  • Arora Subhash Chander;Dharmarha Preeti
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.715-722
    • /
    • 2006
  • In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.

Spectral Properties of k-quasi-class A(s, t) Operators

  • Mecheri, Salah;Braha, Naim Latif
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • In this paper we introduce a new class of operators which will be called the class of k-quasi-class A(s, t) operators. An operator $T{\in}B(H)$ is said to be k-quasi-class A(s, t) if $$T^{*k}(({\mid}T^*{\mid}^t{\mid}T{\mid}^{2s}{\mid}T^*{\mid}^t)^{\frac{1}{t+s}}-{\mid}T^*{\mid}^{2t})T^k{\geq}0$$, where s > 0, t > 0 and k is a natural number. We show that an algebraically k-quasi-class A(s, t) operator T is polaroid, has Bishop's property ${\beta}$ and we prove that Weyl type theorems for k-quasi-class A(s, t) operators. In particular, we prove that if $T^*$ is algebraically k-quasi-class A(s, t), then the generalized a-Weyl's theorem holds for T. Using these results we show that $T^*$ satisfies generalized the Weyl's theorem if and only if T satisfies the generalized Weyl's theorem if and only if T satisfies Weyl's theorem. We also examine the hyperinvariant subspace problem for k-quasi-class A(s, t) operators.