• Title/Summary/Keyword: [p, q]-order

Search Result 516, Processing Time 0.03 seconds

Studies on the fungicidal action and its physico-chemical properties of phenylmercuric 8-oxyquinolinate (Phenylmercuric 8-oxyquinolinate의 살균작용 및 이의 이화학적 성질에 관한 연구)

  • Sohn C. Y.;Kang I. M.;Lee S. H.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.11-18
    • /
    • 1965
  • In order to investigate the fungicidal activities against various plant pathogenes, diminishing effect of plant transpiration, phytotoxicities, vapor effect and the rate of reduction by ultraviolet rays of phenylmercuric 8-oxyquinolinate(P.M.Q), this experiments were undertaken under various laboratory conditions. 1. Inhibitory activity on the spore germination of this chemical was shown less effective than that of P.M.A..(Table 2, Table 3, Table 4, Table 5 and Table 6) Also, P.M.Q. was resulted a somewhat higher inhibitory activity on the hyphae growth than P.M.A. (Table 7). 2. In the diminishing effect of plant transpiration, 8-hydroxyquinoline sulfate(oxine sulfate) was more strong inhibitory at first than P.M.Q., while, at last, P.M.Q. was more strong inhibitory in comparison with oxine sulfate(Table 8, Fig. 1 and Table 9). 3. P.M.Q. was shown less injury on the germination of rice plant seeds and the emergence of their roots than P.M. A.(Table 10). Injuries was not observed on the rice seedlings and soy-bean seedlings sprayed with 40 ppm of this chemical. 4. P.M.A. had more inhibitory effects on the mycelial growth of phytopathogenes than P.M.Q. on the vapor effect (Table 11, Fig. 2). 5. Biological activity and chemical decomposition rate of P.M.A. were greatly reduced by exposure of this compound to ultraviolet rays. But, P.M.Q. was only slightly affected by similar treatment(Table 12, Fig. 3, Table 13 and Fig. 4). From the above results, this chemical will be a promising fungicide adding fungitoxicities against various phytopatho genes, diminishing effect of plant transpiration and physico-stability.

  • PDF

THE THEORY AND APPLICATIONS OF SECOND-ORDER DIFFERENTIAL SUBORDINATIONS

  • Lee, Jun Rak
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.85-101
    • /
    • 1999
  • Let $p$ be analytic in the unit disc U and let $q$ be univalent in U. In addition, let ${\Omega}$ be a set in C and let ${\psi}:c^3{\times}U{\rightarrow}C$. The author determines conditions on ${\psi}$ so that $$\{{\psi}(p(z),zp^{\prime}(z),z^2p^{{\prime}{\prime}}(z);z){\mid}z{\in}U\}{\subset}{\Omega}{\Rightarrow}p(U){\subset}q(U)$$. Applications of this result to differential inequalities, differential subordinations and integral inequalities are presented.

  • PDF

Supply Chain Coordination in 2-Stage-Ordering-Production System with Update of Demand Information

  • Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.3
    • /
    • pp.304-318
    • /
    • 2014
  • It is necessary for a retailer to improve responsiveness to uncertain customer demand in product sales. In order to solve this problem, this paper discusses an optimal operation for a 2-stage-ordering-production system consisting of a retailer and a manufacturer. First, based on the demand information estimated at first order time $t_1$, the retailer determines the optimal initial order quantity $Q^*_1$, the optimal advertising cost $a^*_1$ and the optimal retail price $p^*_1$ of a single product at $t_1$, and then the manufacturer produces $Q^*_1$. Next, the retailer updates the demand information at second order time $t_2$. If the retailer finds that $Q^*_1$ dissatisfies the demand indicated by the demand information updated at $t_2$, the retailer determines the optimal second order quantity $Q^*_2$ under $Q^*_1$ and adjusts optimally the advertising cost and the retail price to $a^*_2$ and $p^*_2$ at $t_2$. Here, decision-making approaches for two situations are made-a decentralized supply chain (DSC) whose objective is to maximize the retailer's profit and an integrated supply chain (ISC) whose objective is to maximize the whole system's profit. In the numerical analysis, the results of the optimal decisions under DSC are compared with those under ISC. In addition, supply chain coordination is discussed to adjust the unit wholesale price at each order time as Nash Bargaining solutions.

A Study on the Pole-Q Reduction of Chebyshev Function Using Trade-off (트레이드 오프를 이용한 Chebyshev 함수의 극점-Q 감소에 관한 연구)

  • 윤창훈;최석우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.79-83
    • /
    • 2000
  • When passband ripple α/sub p/ and stopband attenuation α/sub s/ at the w/sub s/ where the stopband begins are specified in filter design, △α/sub s/ usually exceeds the specification by △α/sub s/ due to the necessity that the order n of the filter function be an integer. In this paper, we apply a trade-off method to remove the excess stopband attenuation △α/sub s/ for reducing the value of pole-Q and improving the characteristics of the Chebyshev filter function. We also apply the trade-off method of pole-Q reduction to the modified Chebyshev function, and then the 4 types of function have been analyzed to compare in frequency and time domain characteristics. The trade-off method reduces the pole-Q which influences the filter characteristics to maximum 49.6% without increase of the order n. Thus implies that they have the improved characteristics such as the reduced passband ripple and flatter delay characteristics as compared Chebyshev filter function before trade-off. And the unit step response shows shorter delay time and settling time in time domain performance.

  • PDF

Biosorption of Lead $(Pb^{2+})$ from Aqueous Solution by Rhodotorula aurantiaca

  • Cho, Dae-Haeng;Yoo, Man-Hyong;Kim, Eui-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 2004
  • The aim of this work was to investigate the adsorption isotherm and kinetic model for the biosorption of lead $(Pb^{2+})$ by Rhodotorula aurantiaca and to examine the environmental factors for this metal removal. Within five minutes of contact, $Pb^{2+}$ sorption reached nearly 86% of the total $Pb^{2+}$ sorption. The optimum initial pH value for removal of $Pb^{2+}$ was 5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. The Langmuir sorption model provided a good fit throughout the concentration range. The conformity of these data to the Langmuir model indicated that biosorption of $Pb^{2+}$ by R. aurantiaca could be characterized as a monolayer, single-site type phenomenon with no interaction between ions adsorbed in neighboring sites. The maximum $Pb^{2+}$ sorption capacity $(q_{max})$ and Langmuir constant (b) were 46.08 mg/g of biomass and 0.04 l/mg, respectively. The pseudo second-order equation was well fitted to the experimental data. The correlation coefficients for the linear plots of t/q against t for the second-order equation were 0.999 for all the initial concentrations of biosorbent for contact times of 180 min. The theoretical $q_{eq}$ value was very close to the experimental $q_{eq}$ value.

Plant Community Structure of Pinus densiflora S. et Z. Forest in the Geumjeongsan (Mt.), Busan Metropolitan City (부산광역시 금정산 소나무림 식생구조 연구)

  • Lee, Kyoung-Jae;Kwak, Jeong-In;Kwak, Nam-Hyun;Jang, Jong-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.462-472
    • /
    • 2013
  • This study was carried out to provide a basic data for preservation of Pinus desiflora forest as cultural landscape forest by analyzing characteristics of plant community of P. desiflora forest in Geumjeongsan(mountatin) in Busan city. In order to analyze plant community of P. densiflora in Geumjeongsan, we set up 10 study plots inside and 8 plots outside of Geumjeongsansung(mountain fortress, hereinafter 'Sansung')(unit area: $400m^2$), a total of 18 plots. TWINSPAN analysis divided these 18 study plots into 6 communities which are Querqus serrata-P. desiflora community, P. desiflora community, P. desiflora-Q. serrata community, P. thunbergii-P. densiflora community, P. densiflora-P. thubergii-Q. acutissima community, and P. densiflora-Platycarya strobilacea community. Importance Percentage (I.P.) of each area and DBH class distribution of main species showed that P. densiflora community would succeed to Q. serrata community or C. tschonoskii community. Analysis on tree age found out that communities in the Sansung were 32~37 years old and those outside the Sansung were 44~57 years old. Shannon's species diversity index ranged from 0.4826 to 1.2499. Regarding correlation between species, P. densiflora had negative correlation with Styrax japonica. Based on abovementioned result we expected ecological succession from P. densiflora community to Q. serrata community inside of the Sansung. Outside the Sansung, succession from P. densiflora-P. thunbergii community to C. tschonoskii-Q. serrata community was expected. In order to manage P. densiflora forest as cultural landscape forest, Q. spp in the understory and shrub layer and deciduous broad-leaved arboreal trees should be managed. Tree crown management of deciduous broad-leaved trees in competition with P. desiflora, is also required.

A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION ON GROUPS AND AN APPLICATION

  • Elfen, Heather Hunt;Riedel, Thomas;Sahoo, Prasanna K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2165-2182
    • /
    • 2017
  • Let G be a group and $\mathbb{C}$ the field of complex numbers. Suppose ${\sigma}:G{\rightarrow}G$ is an endomorphism satisfying ${{\sigma}}({{\sigma}}(x))=x$ for all x in G. In this paper, we first determine the central solution, f : G or $G{\times}G{\rightarrow}\mathbb{C}$, of the functional equation $f(xy)+f({\sigma}(y)x)=2f(x)+2f(y)$ for all $x,y{\in}G$, which is a variant of the quadratic functional equation. Using the central solution of this functional equation, we determine the general solution of the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s) for all $p,q,r,s{\in}G$, which is a variant of the equation f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s) studied by Chung, Kannappan, Ng and Sahoo in [3] (see also [16]). Finally, we determine the solutions of this equation on the free groups generated by one element, the cyclic groups of order m, the symmetric groups of order m, and the dihedral groups of order 2m for $m{\geq}2$.

Lp error estimates and superconvergence for finite element approximations for nonlinear parabolic problems

  • LI, QIAN;DU, HONGWEI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • In this paper we consider finite element mathods for nonlinear parabolic problems defined in ${\Omega}{\subset}R^d$ ($d{\leq}4$). A new initial approximation is taken. Optimal order error estimates in $L_p$ for $2{\leq}p{\leq}{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2{\leq}q{\leq}{\infty}$ are demonstrated as well.

  • PDF

OSCILLATION THEOREMS FOR SECOND-ORDER MIXED-TYPE NEUTRAL DYNAMIC EQUATIONS ON SOME TIME SCALES

  • Sun, Jing
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.15-26
    • /
    • 2012
  • Some oscillation results are presented for the second-order neutral dynamic equation of mixed type on a time scale unbounded above $$\(r(t)[x(t)+p_1(t)x(t-{\tau}_1)+p_2(t)x(t+{\tau}_2)]^{\Delta}\)^{\Delta}+q_1(t)x(t-{\tau}_3)+q_2(t)x(t+{\tau}_4)=0.$$ These criteria can be applied when $\mathbb{T}=\mathbb{R}$, $\mathbb{T}=h{\mathbb{Z}}$ and $\mathbb{T}=\mathbb{P}_{a,b}$. Two examples are also provided to illustrate the main results.

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.