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OSCILLATION THEOREMS FOR SECOND-ORDER

MIXED-TYPE NEUTRAL DYNAMIC EQUATIONS ON SOME

TIME SCALES

JING SUN

Abstract. Some oscillation results are presented for the second-order neu-
tral dynamic equation of mixed type on a time scale unbounded above
(
r(t)[x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2)]

∆
)∆

+q1(t)x(t−τ3)+q2(t)x(t+τ4) = 0.

These criteria can be applied when T = R, T = hZ and T = Pa,b. Two
examples are also provided to illustrate the main results.
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1. Introduction

This paper concerns the oscillatory property of the second-order neutral dy-
namic equation of mixed type

(
r(t)[x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2)]

∆
)∆

+q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0, t ∈ T. (1)

Throughout this paper, we will assume the following conditions hold.
(h1) τi ≥ 0 are constants, for i = 1, 2, 3, 4, {t − τ1 : t ∈ [t0,∞)T} =

[t0 − τ1,∞)T, {t + τ2 : t ∈ [t0,∞)T} = [t0 + τ2,∞)T, {t − τ3 : t ∈ [t0,∞)T} ⊆
[t0 − τ3,∞)T and {t+ τ4 : t ∈ [t0,∞)T} ⊆ [t0 + τ4,∞)T;

(h2) r ∈ C1
rd([t0,∞)T,R), r(t) > 0 for t ∈ [t0,∞)T;

(h3) pi ∈ Crd([t0,∞)T, [0, ai]), where ai are constants for i = 1, 2;
(h4) qj ∈ Crd([t0,∞)T, [0,∞)), for j = 1, 2.
A time scale T is an arbitrary nonempty closed subset of the real R. Since we

are interested in oscillatory behavior, we assume throughout this paper that the
given time scale T is unbounded above. We assume t0 ∈ T and it is convenient

Received May 26, 2011. Revised July 29, 2011. Accepted August 4, 2011.

c© 2012 Korean SIGCAM and KSCAM.

15



16 Jing Sun

to assume t0 > 0. We define the time scale interval of the form [t0,∞)T by
[t0,∞)T := [t0,∞) ∩ T.

We put z(t) = x(t) + p1(t)x(t − τ1) + p2(t)x(t + τ2). By a solution of Eq.
(1), we mean a nontrivial real-valued function x which has the properties z ∈
C1

rd([Tx,∞)T,R) and rz∆ ∈ C1
rd([Tx,∞)T,R) for some Tx ∈ [t0,∞)T and satisfy-

ing Eq. (1) on [Tx,∞)T. We restrict our attention to those solutions x(t) of Eq.
(1) which exist on some half linear [Tx,∞)T and satisfy sup{|x(t)| : t ≥ T} > 0
for any T ∈ [Tx,∞)T. As is customary, a solution of Eq. (1) is called oscillatory
if it is neither eventually positive nor eventually negative, otherwise, it is called
nonoscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory.

In recent years, with the development of dynamic equations on time scales,
e.g., [1, 3, 4, 8], there has been much research activity concerning the oscillation
and nonoscillation of solutions of various equations on time scales, we refer the
reader to the [2, 5, 6, 9, 12, 13, 14].

It is interesting to study Eq. (1). We note that if T = R, then Eq. (1)
becomes the second-order neutral differential equation
(
r(t)[x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2)]

′)′ + q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0.

For the oscillation of such differential equation; see the related papers [10, 11].
In particular, the special case of the above equation

[x(t) + p1x(t− τ1) + p2x(t+ τ2)]
′′ + q1x(t− τ3) + q2x(t+ τ4) = 0,

which is encountered in the study of vibrating masses attached to an elastic bar
(see Hale [7]).

If T = Z, then Eq. (1) becomes the second-order neutral difference equation

∆(r(t)∆[x(t) + p1(t)x(t− τ1) + p2(t)x(t+ τ2)]) + q1(t)x(t− τ3) + q2(t)x(t+ τ4) = 0.

So far, there are no results regarding the oscillation of Eq. (1) on time scales.
This motivated us to examine the oscillatory property of Eq. (1). The organiza-
tion of this paper is as follows: In Section 2, we present the basic definitions and
the theory of calculus on time scales. In Section 3, by using Riccati substitution
technique, some oscillation criteria are established for Eq. (1) under the case
when ∫ ∞

t0

1

r(t)
∆t = ∞. (2)

In Section 4, we give two examples to illustrate the main results.
Below, when we write a functional inequality without specifying its domain

of validity we assume that it holds for all sufficiently large t.

2. Some preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. Since we are interested in oscillatory behavior, we suppose that the time
scale under consideration is not bounded above, i.e., it is a time scale interval of
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the form [t0,∞)T. On any time scale we define the forward and backward jump
operators by

σ(t) := inf{s ∈ T|s > t}, and ρ(t) := sup{s ∈ T|s < t}.
A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ(t) = t,

left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. The graininess µ of the
time scale is defined by µ(t) := σ(t)− t.

For a function f : T→ R (the range R of f may actually be replaced by any
Banach space), the (delta) derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered then
the derivative is defined by

f∆(t) = lim
s→t+

f(σ(t))− f(s)

t− s
= lim

s→t+

f(t)− f(s)

t− s
,

provided this limit exists.
A function f : T → R is said to be rd-continuous if it is continuous at each

right-dense point and if there exists a finite left limit in all left-dense points.
The set of rd-continuous functions f : T→ R is denoted by Crd(T,R).

f is said to be differentiable if its derivative exists. The set of functions
f : T→ R that are differentiable and whose derivative is rd-continuous function
is denoted by C1

rd(T,R).
The derivative and the shift operator σ are related by the formula

fσ(t) = f(σ(t)) = f(t) + µ(t)f∆(t).

Let f be a real-valued function defined on an interval [a, b]. We say that f is
increasing, decreasing, nondecreasing, and nonincreasing on [a, b] if t1, t2 ∈ [a, b]
and t2 > t1 imply f(t2) > f(t1), f(t2) < f(t1), f(t2) ≥ f(t1) and f(t2) ≤ f(t1),
respectively. Let f be a differentiable function on [a, b]. Then f is increasing,
decreasing, nondecreasing, and nonincreasing on [a, b] if f∆(t) > 0, f∆(t) < 0,
f∆(t) ≥ 0, and f∆(t) ≤ 0 for all t ∈ [a, b), respectively.

We will make use of the following product and quotient rules for the deriv-
ative of the product fg and the quotient f/g (where g(t)g(σ(t)) 6= 0) of two
differentiable functions f and g

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f, the Cauchy integral of f∆ is
defined by ∫ b

a

f∆(t)∆t = f(b)− f(a).
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The integration by parts formula reads
∫ b

a

f∆(t)g(t)∆t = f(b)g(b)− f(a)g(a)−
∫ b

a

fσ(t)g∆(t)∆t,

and infinite integrals are defined as
∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

3. Main results

In this section, we will establish some oscillation criteria for Eq. (1). Before
stating our main results, we begin with the following lemmas which will play a
crucial role in the proofs of the main results.

Lemma 3.1 ( [3, Theorem 1.93] (Chain Rule)). Assume that v ∈ T → R is

strictly increasing and T̃ = v(T) is a time scale. Let w : T̃ → R and ∆̃ denote

the derivative on T̃. If v∆(t) and w∆̃(v(t)) exist for t ∈ Tk, then

(w ◦ v)∆ = (w∆̃ ◦ v)v∆.
Lemma 3.2. Assume that there exists T ∈ [t0,∞)T, sufficiently large, such that

z(t) > 0, z∆(t) > 0, (r(t)z∆(t))∆ < 0, t ∈ [T,∞)T.

Then

z(t− τ3)

z(t)
≥

∫ t−τ3
T

∆s
r(s)∫ t

T
∆s
r(s)

.

Proof. The proof is similar to that of Erbe et al. [6, Lemma 2.4], and so is
omitted. ¤

Throughout this paper, we let

Q(t) = Q1(t) +Q2(t), Q1(t) = min{q1(t), q1(t− τ1), q1(t+ τ2)},
Q2(t) = min{q2(t), q2(t− τ1), q2(t+ τ2)} and δ∆+ (t) = max{0, δ∆(t)}.

Theorem 3.3. Assume that (2) holds, τ3 ≥ τ1 − µ(t) for t ∈ [t0,∞)T, {t− τ3 :
t ∈ [t0,∞)T} = [t0 − τ3,∞)T and τ∆(t) > 0 for t ∈ [t0,∞)T. Furthermore,
assume that there exists a positive function δ ∈ C1

rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t0

[
δ(s)Q(s)− 1 + a1 + a2

4

r(s− τ3)(δ
∆
+ (s))2

δ(s)

]
∆s = ∞ (3)

holds. Then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality,
we assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(t − τ1) > 0,
x(t+ τ2) > 0, x(t− τ3) > 0 and x(t+ τ4) > 0 for all t ∈ [t1,∞)T. Then z(t) > 0
for t ∈ [t1,∞)T. In view of (1), we obtain

(r(t)z∆(t))∆ = −q1(t)x(t− τ3)− q2(t)x(t+ τ4) ≤ 0, t ∈ [t1,∞)T. (4)
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Thus, r(t)z∆(t) is nonincreasing. Condition (3) implies that Q(t) is not identi-
cally zero eventually, i.e., r(t)z∆(t) can not be an eventually constant function.
By (2), there exists t2 ∈ [t1,∞)T such that

z(t+ τ2) > 0, z(t) > 0, z∆(t− τ1) > 0 (5)

for all t ∈ [t2,∞)T (see also [5, Remark 3.2]). By applying (1) and Lemma 3.1,
for all sufficiently large t, we obtain

(r(t)z∆(t))∆ + q1(t)x(t− τ3) + q2(t)x(t+ τ4)

+ a1(r(t− τ1)z
∆(t− τ1))

∆ + a1q1(t− τ1)x(t− τ1 − τ3)

+ a1q2(t− τ1)x(t+ τ4 − τ1) + a2(r(t+ τ2)z
∆(t+ τ2))

∆

+ a2q1(t+ τ2)x(t+ τ2 − τ3) + a2q2(t+ τ2)x(t+ τ2 + τ4) = 0.

Thus

(r(t)z∆(t))∆ + a1(r(t− τ1)z
∆(t− τ1))

∆ + a2(r(t+ τ2)z
∆(t+ τ2))

∆

+ Q1(t)z(t− τ3) +Q2(t)z(t+ τ4) ≤ 0. (6)

Since z∆(t) > 0, we have z(t+ τ4) ≥ z(t− τ3). Then, we get

(r(t)z∆(t))∆ + a1(r(t− τ1)z
∆(t− τ1))

∆

+ a2(r(t+ τ2)z
∆(t+ τ2))

∆ +Q(t)z(t− τ3) ≤ 0. (7)

Using the Riccati transformation

ω1(t) = r(t)z∆(t)
δ(t)

z(t− τ3)
, t ∈ [t2,∞)T. (8)

Then ω1(t) > 0 for t ∈ [t2,∞)T. Differentiating (8), from Lemma 3.1, we obtain

ω1
∆(t) = (r(t)z∆(t))∆

δ(t)

z(t− τ3)
+ (r(t)z∆(t))σ

δ∆(t)

z(σ(t− τ3))

− (r(t)z∆(t))σ
δ(t)z∆(t− τ3)

z(t− τ3)z(σ(t− τ3))
.

By (4), we have r(t − τ3)z
∆(t− τ3) ≥ (r(t)z∆(t))σ. Thus, from (5) and (8), we

get

ω1
∆(t) ≤ δ∆+ (t)

δσ(t)
ω1

σ(t) + δ(t)
(r(t)z∆(t))∆

z(t− τ3)
− δ(t)(ω1

σ(t))2

(δσ(t))2r(t− τ3)
. (9)

Next, define function ω2 by

ω2(t) = r(t− τ1)z
∆(t− τ1)

δ(t)

z(t− τ3)
, t ∈ [t2,∞)T. (10)

Then ω2(t) > 0 for t ∈ [t2,∞)T. Differentiating (10), by Lemma 3.1, we see that

ω2
∆(t) = (r(t− τ1)z

∆(t− τ1))
∆ δ(t)

z(t− τ3)
+ (r(t− τ1)z

∆(t− τ1))
σ δ∆(t)

z(σ(t)− τ3)

−(r(t− τ1)z
∆(t− τ1))

σ δ(t)z∆(t− τ3)

z(t− τ3)z(σ(t)− τ3)
.
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Note that τ3 ≥ τ1 − µ(t). By (4), we have r(t− τ3)z
∆(t− τ3) ≥ (r(t− τ1)z

∆(t−
τ1))

σ. Hence by (5) and (10), we obtain

ω2
∆(t) ≤ δ∆+ (t)

δσ(t)
ω2

σ(t) + δ(t)
(r(t− τ1)z

∆(t− τ1))
∆

z(t− τ3)
− δ(t)(ω2

σ(t))2

(δσ(t))2r(t− τ3)
. (11)

Next, define another function ω3 by

ω3(t) = r(t+ τ2)z
∆(t+ τ2)

δ(t)

z(t− τ3)
, t ∈ [t2,∞)T. (12)

Then ω3(t) > 0 for t ∈ [t2,∞)T. Differentiating (12), from Lemma 3.1, we have

ω3
∆(t) = (r(t+ τ2)z

∆(t+ τ2))
∆ δ(t)

z(t− τ3)
+ (r(t+ τ2)z

∆(t+ τ2))
σ δ∆(t)

z(σ(t)− τ3)

−(r(t+ τ2)z
∆(t+ τ2))

σ δ(t)z∆(t− τ3)

z(t− τ3)z(σ(t)− τ3)
.

By (4), we have r(t− τ3)z
∆(t− τ3) ≥ (r(t+ τ2)z

∆(t+ τ2))
σ. Then, from (5) and

(12), we get

ω3
∆(t) ≤ δ∆+ (t)

δσ(t)
ω3

σ(t) + δ(t)
(r(t+ τ2)z

∆(t+ τ2))
∆

z(t− τ3)
− δ(t)(ω3

σ(t))2

(δσ(t))2r(t− τ3)
. (13)

Therefore, by (9), (11) and (13), we obtain

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t)

≤ δ(t)

[
(r(t)z∆(t))∆ + a1(r(t− τ1)z∆(t− τ1))∆ + a2(r(t+ τ2)z∆(t+ τ2))∆

z(t− τ3)

]

+

[
δ∆+ (t)

δσ(t)
ω1

σ(t)− δ(t)(ω1
σ(t))2

(δσ(t))2r(t− τ3)

]
+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ(t)− δ(t)(ω2
σ(t))2

(δσ(t))2r(t− τ3)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ(t)− δ(t)(ω3
σ(t))2

(δσ(t))2r(t− τ3)

]
. (14)

It follows from (7) and (14) that

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t) ≤ − δ(t)Q(t) +

[
δ∆+ (t)

δσ(t)
ω1

σ(t)− δ(t)(ω1
σ(t))2

(δσ(t))2r(t− τ3)

]

+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ(t)− δ(t)(ω2
σ(t))2

(δσ(t))2r(t− τ3)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ(t)− δ(t)(ω3
σ(t))2

(δσ(t))2r(t− τ3)

]
. (15)

Then, by (15), we get

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t) ≤ −δ(t)Q(t) +

1 + a1 + a2
4

r(t− τ3)(δ
∆
+ (t))2

δ(t)
.

Integrating the above inequality from t2 to t, we obtain
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∫ t

t2

[
δ(s)Q(s)− 1 + a1 + a2

4

r(s− τ3)(δ
∆
+ (s))2

δ(s)

]
∆s ≤ ω1(t2) + a1ω2(t2) + a2ω3(t2),

which contradicts (3). This completes the proof of the theorem. ¤
From Theorem 3.3, if we define function δ by δ(t) = 1, and δ(t) = t, we derive

the following oscillation results.

Corollary 3.4. Assume that (2) holds, τ3 ≥ τ1 − µ(t) for t ∈ [t0,∞)T, {t− τ3 :
t ∈ [t0,∞)T} = [t0 − τ3,∞)T and τ∆(t) > 0 for t ∈ [t0,∞)T. If∫ ∞

t0

Q(s)∆s = ∞,

then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Corollary 3.5. Suppose that (2) holds, τ3 ≥ τ1 −µ(t) for t ∈ [t0,∞)T, {t− τ3 :
t ∈ [t0,∞)T} = [t0 − τ3,∞)T and τ∆(t) > 0 for t ∈ [t0,∞)T. If

lim sup
t→∞

∫ t

t0

[
sQ(s)− 1 + a1 + a2

4

r(s− τ3)

s

]
∆s = ∞,

then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Theorem 3.6. Suppose that (2) holds and τ1 ≥ τ3. Moreover, assume that there
exists a positive function δ ∈ C1

rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t0

[
δ(s)Q(s)− 1 + a1 + a2

4

r(s− τ1)(δ
∆
+ (s))2

δ(s)

]
∆s = ∞ (16)

holds. Then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality,
we assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(t − τ1) > 0,
x(t+ τ2) > 0, x(t− τ3) > 0 and x(t+ τ4) > 0 for all t ∈ [t1,∞)T. Then z(t) > 0
for t ∈ [t1,∞)T. Proceeding as in the proof of Theorem 3.3, we obtain (4)–(7),
for t ∈ [t2,∞)T ⊆ [t1,∞)T. Using the Riccati transformation

ω1(t) = r(t)z∆(t)
δ(t)

z(t− τ1)
, t ∈ [t2,∞)T. (17)

Then ω1(t) > 0 for t ∈ [t2,∞)T. Differentiating (17), by Lemma 3.1, we have

ω1
∆(t) = (r(t)z∆(t))∆

δ(t)

z(t− τ1)
+ (r(t)z∆(t))σ

δ∆(t)

z(σ(t)− τ1)

− (r(t)z∆(t))σ
δ(t)z∆(t− τ1)

z(t− τ1)z(σ(t)− τ1)
.

By (4), we get r(t − τ1)z
∆(t − τ1) ≥ (r(t)z∆(t))σ. Then, from (5) and (17), we

obtain

ω1
∆(t) ≤ δ∆+ (t)

δσ(t)
ω1

σ(t) + δ(t)
(r(t)z∆(t))∆

z(t− τ1)
− δ(t)(ω1

σ(t))2

(δσ(t))2r(t− τ1)
. (18)
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Next, define function ω2 by

ω2(t) = r(t− τ1)z
∆(t− τ1)

δ(t)

z(t− τ1)
, t ∈ [t2,∞)T. (19)

Then ω2(t) > 0 for t ∈ [t2,∞)T. Differentiating (19), from Lemma 3.1, we see
that

ω2
∆(t) = (r(t− τ1)z

∆(t− τ1))
∆ δ(t)

z(t− τ1)
+ (r(t− τ1)z

∆(t− τ1))
σ δ∆(t)

z(σ(t)− τ1)

−(r(t− τ1)z
∆(t− τ1))

σ δ(t)z∆(t− τ1)

z(t− τ1)z(σ(t)− τ1)
.

In view of (4), we obtain r(t−τ1)z
∆(t−τ1) ≥ (r(t−τ1)z

∆(t−τ1))
σ. Hence from

(5) and (19), we get

ω2
∆(t) ≤ δ∆+ (t)

δσ(t)
ω2

σ(t) + δ(t)
(r(t− τ1)z

∆(t− τ1))
∆

z(t− τ1)
− δ(t)(ω2

σ(t))2

(δσ(t))2r(t− τ1)
. (20)

In the following, we define another function ω3 by

ω3(t) = r(t+ τ2)z
∆(t+ τ2)

δ(t)

z(t− τ1)
, t ∈ [t2,∞)T. (21)

Then ω3(t) > 0 for t ∈ [t2,∞)T. Differentiating (21) and using Lemma 3.1, we
obtain

ω3
∆(t) = (r(t+ τ2)z

∆(t+ τ2))
∆ δ(t)

z(t− τ1)
+ (r(t+ τ2)z

∆(t+ τ2))
σ δ∆(t)

z(σ(t)− τ1)

−(r(t+ τ2)z
∆(t+ τ2))

σ δ(t)z∆(t− τ1)

z(t− τ1)z(σ(t)− τ1)
.

By (4), we have r(t − τ1)z
∆(t − τ1) ≥ (r(t + τ2)z

∆(t + τ2))
σ. Thus, by (5) and

(21), we get

ω3
∆(t) ≤ δ∆+ (t)

δσ(t)
ω3

σ(t) + δ(t)
(r(t+ τ2)z

∆(t+ τ2))
∆

z(t− τ1)
− δ(t)(ω3

σ(t))2

(δσ(t))2r(t− τ1)
. (22)

It follows from (18), (20) and (22) that

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t)

≤ δ(t)

[
(r(t)z∆(t))∆ + a1(r(t− τ1)z∆(t− τ1))∆ + a2(r(t+ τ2)z∆(t+ τ2))∆

z(t− τ1)

]

+

[
δ∆+ (t)

δσ(t)
ω1

σ(t)− δ(t)(ω1
σ(t))2

(δσ(t))2r(t− τ1)

]
+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ(t)− δ(t)(ω2
σ(t))2

(δσ(t))2r(t− τ1)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ(t)− δ(t)(ω3
σ(t))2

(δσ(t))2r(t− τ1)

]
. (23)

Thus, by (5), (7), (23) and τ1 ≥ τ3, we obtain

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t) ≤ − δ(t)Q(t) +

[
δ∆+ (t)

δσ(t)
ω1

σ(t)− δ(t)(ω1
σ(t))2

(δσ(t))2r(t− τ1)

]
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+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ(t)− δ(t)(ω2
σ(t))2

(δσ(t))2r(t− τ1)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ(t)− δ(t)(ω3
σ(t))2

(δσ(t))2r(t− τ1)

]
. (24)

Then, by (24), we find that

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t) ≤ −δ(t)Q(t) +

1 + a1 + a2
4

r(t− τ1)(δ
∆
+ (t))2

δ(t)
.

Integrating the above inequality from t2 to t, we obtain

∫ t

t2

[
δ(s)Q(s)− 1 + a1 + a2

4

r(s− τ1)(δ
∆
+ (s))2

δ(s)

]
∆s ≤ ω1(t2) + a1ω2(t2) + a2ω3(t2),

which contradicts (16). The proof of the theorem is complete. ¤

Theorem 3.7. Suppose that (2) holds and t ≤ σ(t)− τ1. Further, assume that
there exists a positive function δ ∈ C1

rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t0

[
δ(s)Q(s)

∫ s−τ3
T

∆u
r(u)∫ s

T
∆u
r(u)

− 1 + a1 + a2
4

r(s)(δ∆+ (s))2

δ(s)

]
∆s = ∞ (25)

holds for T ∈ [t0,∞)T. Then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality,
we assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(t − τ1) > 0,
x(t+ τ2) > 0, x(t− τ3) > 0 and x(t+ τ4) > 0 for all t ∈ [t1,∞)T. Then z(t) > 0
for t ∈ [t1,∞)T. Proceeding as in the proof of Theorem 3.3, we obtain (4)–(7),
for t ∈ [t2,∞)T ⊆ [t1,∞)T. Using the Riccati transformation

ω1(t) = r(t)z∆(t)
δ(t)

z(t)
, t ∈ [t2,∞)T. (26)

Then ω1(t) > 0 for t ∈ [t2,∞)T. Differentiating (26), we get

ω1
∆(t) = (r(t)z∆(t))∆

δ(t)

z(t)
+ (r(t)z∆(t))σ

δ∆(t)

zσ(t)
− (r(t)z∆(t))σ

δ(t)z∆(t)

z(t)zσ(t)
.

By (4), we get r(t)z∆(t) ≥ (r(t)z∆(t))σ. Then, from (5) and (26), we have

ω1
∆(t) ≤ δ∆+ (t)

δσ(t)
ω1

σ(t) + δ(t)
(r(t)z∆(t))∆

z(t)
− δ(t)(ω1

σ(t))2

(δσ(t))2r(t)
. (27)

Next, define function ω2 by

ω2(t) = r(t− τ1)z
∆(t− τ1)

δ(t)

z(t)
, t ∈ [t2,∞)T. (28)

Then ω2(t) > 0 for t ∈ [t2,∞)T. Differentiating (28), we obtain

ω2
∆(t) = (r(t− τ1)z

∆(t− τ1))
∆ δ(t)

z(t)
+ (r(t− τ1)z

∆(t− τ1))
σ δ

∆(t)

zσ(t)
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−(r(t− τ1)z
∆(t− τ1))

σ δ(t)z
∆(t)

z(t)zσ(t)
.

In view of (4), we obtain r(t)z∆(t) ≥ (r(t− τ1)z
∆(t− τ1))

σ due to t ≤ σ(t)− τ1.
Hence from (5) and (28), we get

ω2
∆(t) ≤ δ∆+ (t)

δσ(t)
ω2

σ(t) + δ(t)
(r(t− τ1)z

∆(t− τ1))
∆

z(t)
− δ(t)(ω2

σ(t))2

(δσ(t))2r(t)
. (29)

Below, we define another function ω3 by

ω3(t) = r(t+ τ2)z
∆(t+ τ2)

δ(t)

z(t)
, t ∈ [t2,∞)T. (30)

Then ω3(t) > 0 for t ∈ [t2,∞)T. Differentiating (30), have

ω3
∆(t) = (r(t+ τ2)z

∆(t+ τ2))
∆ δ(t)

z(t)
+ (r(t+ τ2)z

∆(t+ τ2))
σ δ

∆(t)

zσ(t)

−(r(t+ τ2)z
∆(t+ τ2))

σ δ(t)z
∆(t)

z(t)zσ(t)
.

By (4), we have r(t)z∆(t) ≥ (r(t + τ2)z
∆(t + τ2))

σ. Thus, by (5) and (30), we
obtain

ω3
∆
(t) ≤ δ∆+ (t)

δσ(t)
ω3

σ
(t) + δ(t)

(r(t + τ2)z
∆(t + τ2))

∆

z(t)
− δ(t)(ω3

σ(t))2

(δσ(t))2r(t)
. (31)

Therefore, it follows from (27), (29) and (31) that

ω1
∆(t) + a1ω2

∆(t) + a2ω3
∆(t)

≤ δ(t)

[
(r(t)z∆(t))∆ + a1(r(t− τ1)z

∆(t− τ1))
∆ + a2(r(t+ τ2)z

∆(t+ τ2))
∆

z(t)

]

+

[
δ∆+ (t)

δσ(t)
ω1

σ
(t) − δ(t)(ω1

σ(t))2

(δσ(t))2r(t)

]
+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ
(t) − δ(t)(ω2

σ(t))2

(δσ(t))2r(t)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ
(t) − δ(t)(ω3

σ(t))2

(δσ(t))2r(t)

]
. (32)

Thus, by (7) and (32) and Lemma 3.2, we obtain

ω1
∆
(t) + a1ω2

∆
(t) + a2ω3

∆
(t) ≤ − δ(t)Q(t)

∫ t−τ3
T

∆s
r(s)∫ t

T
∆s
r(s)

+

[
δ∆+ (t)

δσ(t)
ω1

σ
(t) − δ(t)(ω1

σ(t))2

(δσ(t))2r(t)

]

+ a1

[
δ∆+ (t)

δσ(t)
ω2

σ
(t) − δ(t)(ω2

σ(t))2

(δσ(t))2r(t)

]

+ a2

[
δ∆+ (t)

δσ(t)
ω3

σ
(t) − δ(t)(ω3

σ(t))2

(δσ(t))2r(t)

]
(33)

for all sufficiently large T. Then, by (33), we find that
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ω1
∆(t)+a1ω2

∆(t)+a2ω3
∆(t) ≤ −δ(t)Q(t)

∫ t−τ3
T

∆s
r(s)∫ t

T
∆s
r(s)

+
1 + a1 + a2

4

r(t)(δ∆+ (t))2

δ(t)
.

Integrating the above inequality from t2 to t, we obtain

∫ t

t2

[
δ(s)Q(s)

∫ s−τ3
T

∆u
r(u)∫ s

T
∆u
r(u)

− 1 + a1 + a2

4

r(s)(δ∆+ (s))2

δ(s)

]
∆s ≤ ω1(t2)+a1ω2(t2)+a2ω3(t2),

which contradicts (25). The proof of the theorem is complete. ¤

4. Examples

In this section, we give two examples to illustrate the main results.

Example 4.1. Consider the second-order Euler dynamic equation

x∆∆(t) +
γ

t2
x(t) = 0, t ∈ [t0,∞)T. (34)

Let r(t) = 1, p1(t) = p2(t) = q1(t) = 0, q2(t) = γ/t2 and τi = 0, for i =
1, 2, 3, 4. Then a1 = a2 = 0 and Q(t) = γ/t2. Applying Corollary 3.5, we can
obtain that Eq. (34) is oscillatory for γ > 1/4, which is a sharp condition for
the oscillation of Eq. (34) when T = R.

Example 4.2. Consider the second-order neutral differential equation

[x(t) + x(t− 7π) + x(t+ π)]′′ +
1

2
x(t− 5π) +

1

2
x(t+ π) = 0, t ∈ [t0,∞). (35)

Set r(t) = 1, p1(t) = p2(t) = 1, q1(t) = q2(t) = 1/2, τ1 = 7π, τ3 = 5π and
δ(t) = 1. It is easy to see that all conditions of Theorem 3.6 hold. Thus, Eq. (35)
is oscillatory. For example, x(t) = sin t is an oscillatory solution of Eq. (35).
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