• Title/Summary/Keyword: (P,Q,B)-operator

Search Result 36, Processing Time 0.018 seconds

BOOLEAN RANK INEQUALITIES AND THEIR EXTREME PRESERVERS

  • Song, Seok-Zun;Kang, Mun-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1525-1532
    • /
    • 2011
  • The $m{\times}n$ Boolean matrix A is said to be of Boolean rank r if there exist $m{\times}r$ Boolean matrix B and $r{\times}n$ Boolean matrix C such that A = BC and r is the smallest positive integer that such a factorization exists. We consider the the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

ON THE ADAPTED EQUATIONS IN VARIOUS DYPLOID MODEL AND HARDY-WEINBURG EQUILIBRIUM IN A TRIPLOID MODEL

  • Won Choi
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N}},\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}}$$ where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. Choi defined the density and operator for the value of the frequency of one gene and found the adapted partial differential equation as a follow-up for the frequency of alleles and applied this adapted partial differential equation to several diploid model [1]. In this paper, we find adapted equations for the model for selection against recessive homozygotes and in case that the alley frequency changes after one generation of selection when there is no dominance. Also we consider the triploid model with three alleles IA, IB and i and determine whether six genotypes observed are in Hardy-Weinburg for equilibrium.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX PRODUCTS OVER SEMIRINGS

  • Song, Seok-Zun;Cheon, Gi-Sang;Jun, Young-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1043-1056
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix ordered pairs which satisfy multiplicative properties with respect to spanning column rank of matrices over semirings.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

  • Alotaibi, Sarah Rsheed Mohamed;Saoudi, Kamel
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.747-775
    • /
    • 2020
  • In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < ps where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝN. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(${\bar{\Omega}}$).

SOME PROPERTIES OF SCHRODINGER OPERATORS

  • Kim, Han-Soo;Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.23-26
    • /
    • 1987
  • The aim of this note is to study some properties of Schrodinger operators, the magnetic case, $H_{0}$ (a)=1/2(-i.del.-a)$^{2}$; H(a)= $H_{0}$ (a)+V, where a=( $a_{1}$,.., $a_{n}$ ).mem. $L^{2}$$_{loc}$ and V is a potential energy. Also, we are interested in solutions, .psi., of H(a).psi.=E.psi. in the sense that (.psi., $e^{-tH}$(a).PSI.)= $e^{-tE}$(.psi.,.PSI.) for all .PSI..mem. $C_{0}$ $^{\infty}$( $R^{n}$ ) (see B. Simon [1]). In section 2, under some conditions, we find that a semibounded quadratic form of H9a) exists and that the Schrodinger operator H(a) with Re V.geq.0 is accretive on a form domain Q( $H_{0}$ (a)). But, it is well-known that the Schrodinger operator H=1/2.DELTA.+V with Re V.geq.0 is accretive on $C_{0}$ $^{\infty}$( $R^{n}$ ) in N Okazawa [4]. In section 3, we want to discuss $L^{p}$ estimates of Schrodinger semigroups.ups.

  • PDF