• Title/Summary/Keyword: (B,N)Films

Search Result 316, Processing Time 0.026 seconds

The Characteristic and Formation of Ti(B,N) Films on Steel by EA Hot Filament CVD (EA hot filament CVD system을 이용하여 금형공구강에 증착한 Ti(B,N)박막의 합성과 특성에 관하여)

  • Yoon, Jung-H.;Choi, Yong;Choe, Jean-I.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.585-589
    • /
    • 2012
  • The characteristics of interface layer and the effect of mole fraction of inlet gas mixture($B_2H_6/H_2/N_2/TiCl_4$) on the microstructure of Ti(B,N) films were studied by microwave plasma hot filament CVD process. Ti(B,N) films were deposited on a substrate(STD-61) to develop a high performance of resistance wear coating tool. Ti(B,N) films were obtained at a gas pressure of 1 torr, bias voltage of 300 V and substrate temperature of $480^{\circ}C$ in $B_2H_6/H_2/N_2/TiCl_4$gas system. It was found that TiN, $TiB_2$, TiB and hexagonal boron nitride(h-BN) phases exist in thin layer on the STD-61.

Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering (스퍼터링법으로 합성한 BCN 박막의 내식성)

  • Byon E.;Son M. S.;Lee G. H.;Kwon S. C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.

Effect of Substrate Bias Voltage on the Growth of Chromium Nitride Films

  • Jang, Ho-Sang;Kim, Yu-Sung;Lee, Jin-Hee;Chun, Hui-Gon;You, Yong-Zoo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.618-621
    • /
    • 2007
  • Chromium nitride (CrN) films were deposited on silicon substrate by RF magnetron sputtering assisted by inductive coupled nitrogen plasma without intentional substrate heating. Films were deposited with different levels of bombarding energy by nitrogen ions $(N^+)$ to investigate the influence of substrate bias voltage $(V_b)$ on the growth of CrN thin films. XRD spectra showed that the crystallographic structure of CrN films was strongly affected by substrate bias voltage. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) results showed that surface roughness and grain size of the CrN films varied significantly with bias voltage. For - 80 $V_b$ depositions, the CrN films showed bigger grain sizes than those of other bias voltage conditions. The lowest surface roughness of 0.15 nm was obtained from the CrN films deposited at .130 $V_b$.

W-B-C-N 확산방지막에서 질소농도에 따른 Stress 에 대한 연구

  • So, Ji-Seop;Lee, Channg-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.72-73
    • /
    • 2005
  • Stress behavior was studied to investigate the internal behaviors of boron, carbon, and nitrogen in the 1000${\AA}$-thick tungsten boron carbon nitride (W-B-C-N) thin films. The impurities in the W-B-C-N thin films provide stuffing effects that were very effective for preventing the interdiffusion between interconnection metal and silicon substrate during the subsequent high temperature annealing process. The resistivity of W-B-C-N thin film decreases as an annealing temperature increase. The W-B-C-N thin films have compressive stress, and the stress value decreased up to $4.11\times10^{10}dyne/cm^2$ as an $N_2$ flow rate increases up to 3 sccm.

  • PDF

Characteristics and Thermal Stabilities of W-B-C-N Diffusion Barrier by Using the Incorporation of Boron Impurities (Boron 불순물에 의한 W-B-C-N 확산방지막의 특성 및 열적 안정성 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.32-35
    • /
    • 2008
  • Thermally stable diffusion barrier of tungsten carbon nitride(W-C-N) and of tungsten boron carbon nitride(W-B-C-N) thin films have studied to investigate the impurity behaviors of boron and nitrogen. In this paper we newly deposited tungsten boron carbon nitride(W-B-C-N) thin film for various $W_2B$ target power on silicon substrate. The impurities of the 100nm-thick W-C-N and W-B-C-N thin films provide stuffing effect for preventing the inter-diffusion between W-C-N or W-B-C-N thin films and silicon during the high temperature($700^{\circ}C{\sim}1000^{\circ}C$) annealing process.

MICROSTRUCTURE AND TRIBOLOGY OF $TiB_2$ AND $TiB_2$-TiN DOUBLE-LAYER COATINGS

  • Yang, Yunjie;Chen, Lizhi;Zheng, Zhihong;Wang, Xi;Liu, Xianghuai
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.40-48
    • /
    • 1995
  • $TiB_2$-TiN double-layer coating have been prepared by ion beam enhanced deposition. AES, XRD, TEM and HRTEM were employed to characterize the $TiB_2$ layer. The microhardness of the coatings was evaluated by an ultra low-load microhardness indenter system, and the tribological behavior was examined by a ball-on-disc tribology wear tester. It was found that in a single titanium diboride layer, the composition is uniform along the depth of the film, and it is mainly composed of nanocrystalline $TiB_2$ with hexagonal structure, which resulted from the ion bombardment during the film growth. The hardness of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of 39 Gpa at ion energy of 85 keV. The tribological property of the TiB2 films is also improved by higher energy of 85keV. The tribological property of the $TiB_2$ films is also improved by higher energy ion beam bombardment. There is no major disparity in the mechanical properties of double-layer $TiB_2$/TiN coatings and TiN/$TiB_2$ coatings. Both show an improved wear resistance compared with single-layer $TiB_2$ films. The adhesion of double-layer coatings is also superior to that of single-layer films.

  • PDF

The Effects of Nitrogen on Microstructure and Magnetic Properties of Nanocrystalline Fe-Nb-B-N Thin Films (나노결정구조 Fe-Nb-B-N 박막의 미세구조 및 자기적 특성)

  • 박진영;서수정;노태환;김광윤;김종열;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.250-257
    • /
    • 1997
  • The microstructure and magnetic properties of Fe-Nb-B-N thin film alloys, which produced by rf magnetron sputtering method in $Ar+N_2$ mixed gas atmosphere, were investigated. The $Fe_{70}Nb_{14}B_{11}N_5$ films, annealed at 59$0^{\circ}C$, exhibit soft magnetic properties: $4{\pi}M_s=16.5kG$ , $H_c=0.13Oe$ and ${\mu}_{eff}$ (1~10 MHz)=5, 000. The frequency stability of the Fe-Nb-B-N films has also been found to be good up to 10 MHz. The Fe-Nb-B-N thin film alloys annealed at 59$0^{\circ}C$ consist of three phase; fine crystalline $\alpha$-Fe phase with grain size of about 5~10 nm, Nb-B rich amorphous phase and Nb-nitride precipitates with the size of less than 3 nm. Annealed Fe-Nb-B films have two phases; $\alpha$-Fe grains with the size of about 10 nm and Nb-B rich amorphous phase. The addition of N decreased $\alpha$-Fe grain size due to the precipitation of NbN. The good magnetic properties of the Fe-Nb-B-N film alloys are due to fine $\alpha$-Fe grains resulting from the precipitation of NbN.

  • PDF

Analysis of Physical Characteristics on Compound Semiconductor $B_{13}P_2$ using APCVD

  • Hong, K.K.;Jung, Y.C.;Kim, C.J.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • Boron Phosphide films were deposited on (111) Si substrate at $650^{\circ}C$, by the reaction of B2H6 with PH3 using APCVD. N2 was carried out as carrier gas. The optimal gas rates were $20\;m{\ell}/min$ for B2H6, $60\;m{\ell}/min$ for PH3 and $1\;{\ell}/min$ for N2. After as grown the films were insitu annealed for 1hour in N2 ambient at $550^{\circ}C$ and measured. The measurement of AFM shows that the RMS is $29.626{\AA}$ for the reaction temperature at $650^{\circ}C$. The measurement of XRD shows that the films have the orientation of (101). Also, the measurement of AES is shown that the films have B13P2 stoichiometry.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD

  • Ranot, Mahipal;Duong, P.V.;Bhardwaj, A.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • $MgB_2$ thin films with superior superconducting properties are very promising for superconducting magnets, electronic devices and coated conductor electric power applications. A clear understanding of flux pinning mechanism in $MgB_2$ films could be a big aid in improving the performance of $MgB_2$ by the enhancement of $J_c$. The fabrication advancement and the understanding of flux pinning mechanism of $MgB_2$ thin and thick films fabricated by using hybrid physical-chemical vapor deposition (HPCVD) are reviewed. The distinct kind of $MgB_2$ films, such as single-crystal like $MgB_2$ thin films, $MgB_2$ epitaxial columnar thick films, and a-axis-oriented $MgB_2$ films are included for flux pinning mechanism investigation. Various attempts made by researchers to improve further the flux pinning property and $J_c$ performance by means of doping in $MgB_2$ thin films by using HPCVD are also summarized.