DOI QR코드

DOI QR Code

A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD

  • Ranot, Mahipal (BK21 Physics Division and Department of Physics, Sungkyunkwan University) ;
  • Duong, P.V. (BK21 Physics Division and Department of Physics, Sungkyunkwan University) ;
  • Bhardwaj, A. (BK21 Physics Division and Department of Physics, Sungkyunkwan University) ;
  • Kang, W.N. (BK21 Physics Division and Department of Physics, Sungkyunkwan University)
  • Received : 2015.06.03
  • Accepted : 2015.06.09
  • Published : 2015.06.30

Abstract

$MgB_2$ thin films with superior superconducting properties are very promising for superconducting magnets, electronic devices and coated conductor electric power applications. A clear understanding of flux pinning mechanism in $MgB_2$ films could be a big aid in improving the performance of $MgB_2$ by the enhancement of $J_c$. The fabrication advancement and the understanding of flux pinning mechanism of $MgB_2$ thin and thick films fabricated by using hybrid physical-chemical vapor deposition (HPCVD) are reviewed. The distinct kind of $MgB_2$ films, such as single-crystal like $MgB_2$ thin films, $MgB_2$ epitaxial columnar thick films, and a-axis-oriented $MgB_2$ films are included for flux pinning mechanism investigation. Various attempts made by researchers to improve further the flux pinning property and $J_c$ performance by means of doping in $MgB_2$ thin films by using HPCVD are also summarized.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, "Superconductivity at 39 K in magnesium diboride", Nature (London) 410, 63, 2001. https://doi.org/10.1038/35065039
  2. W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, S. I. Lee, "$MgB_2$ superconducting thin films with a transition temperature of 39 Kelvin", Science 292, 1521, 2001. https://doi.org/10.1126/science.1060822
  3. D. K. Finnemore, J. E. Ostenson, S. L. Bud'ko, G. Lapertot and P. C Canfield, "Thermodynamic and transport properties of superconducting $Mg_{10}B_2$". Phys. Rev. Lett. 86, 2420, 2001. https://doi.org/10.1103/PhysRevLett.86.2420
  4. C. G. Zhuang et al., "Ultrahigh current-carrying capability in clean $MgB_2$ films", J. Appl. Phys.104, 013924, 2008. https://doi.org/10.1063/1.2952052
  5. D. C. Larbalestier et al., "Strongly linked current flow in polycrystalline forms of the new superconductor $MgB_2$". Nature 410, 186, 2001. https://doi.org/10.1038/35065559
  6. W. N. Kang, H. J. Kim, E. M. Choi, H. J. Kim, K. H. P. Kim, H. S. Lee, S. I. Lee, "Hall effect in c-axis-oriented $MgB_2$ thin films" Phys. Rev. B 65, 134508, 2002. https://doi.org/10.1103/PhysRevB.65.134508
  7. K. Vinod, R. G. A. Kumar, and U. Syamaprasad, "Prospects for $MgB_2$ superconductor for magnet application" Supercond. Sci. Technol. 20, R1, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
  8. V. Braccini, D. Nardelli, R. Penco, G. Grasso, "Development of ex situ processed $MgB_2$ wires and their application to magnets" Physica C 456, 209, 2007. https://doi.org/10.1016/j.physc.2007.01.030
  9. M. Tomsic et al., "Development of magnesium diboride ($MgB_2$) wires and magnets using in situ strand fabrication method" Physica C 456, 203, 2007. https://doi.org/10.1016/j.physc.2007.01.009
  10. Akiyasu Yamamoto, Atsushi Ishihara, Masaru Tomita and Kohji Kishio, "Permanent magnet with $MgB_2$ bulk superconductor", Appl. Phys. Lett. 105, 032601, 2014. https://doi.org/10.1063/1.4890724
  11. Amalia Ballarino et al., "World-record current in a superconductor" 2014.Available from: http://home.web.cern.ch/about/updates/2014/04/world-record-current-superconductor.
  12. X. Zeng et al., "In situ epitaxial $MgB_2$ thin films for superconducting electronics", Nat. Mater. 11, 35, 2002.
  13. H. Shimakage, A. Saito, A. Kawakami, Z. Wang, "Preparation of As-Grown $MgB_2$ Thin Films by Co-Evaporation Method at Low Substrate Temperature", IEEE Trans. Appl. Supercond. 13, 3309, 2003. https://doi.org/10.1109/TASC.2003.812299
  14. H. Shimakage, M. Tatsumi, Z. Wang, "Ultrathin $MgB_2$ films fabricated by the co-evaporation method at high Mg evaporation rates" Supercond. Sci. Technol. 21, 095009, 2008. https://doi.org/10.1088/0953-2048/21/9/095009
  15. C. Ferdeghini et al., "Growth of c-oriented $MgB_2$ thin films by pulsed laser deposition: structural characterization and electronic anisotropy", Supercond. Sci. Technol. 14, 952, 2001. https://doi.org/10.1088/0953-2048/14/11/311
  16. A. Saito, A. Kawakami, H. Shimakage, Z. Wang, "As-Grown Deposition of Superconducting $MgB_2$ Thin Films by Multiple-Target Sputtering System", Jap. J. Appl. Phys. 41, L127, 2002. https://doi.org/10.1143/JJAP.41.L127
  17. J. R. Ahn, S. G Lee, Y. S. Hwang, G. Y. Sung, D. K. Kim, "Fabrication of $MgB_2$ thin film by rf magnetron sputtering" Physica C 388, 127, 2003.
  18. K. Ueda, M. Naito, "All-$MgB_2$ Josephson tunnel junctions", Appl. Phys. Lett. 79, 2046, 2001. https://doi.org/10.1063/1.1405421
  19. W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, R. H. Hammond, "In situ growth of superconducting $MgB_2$ thin films with preferential orientation by molecular-beam epitaxy", Appl. Phys. Lett. 80, 3563, 2002. https://doi.org/10.1063/1.1478151
  20. A. J. M. van Erven, T. H. Kim, M. Muenzenberg, J. S. Moodera, "High crystallized as-growth smooth and superconducting $MgB_2$ films by molecular-beam epitaxy ", Appl. Phys. Lett. 81, 4982, 2002. https://doi.org/10.1063/1.1530732
  21. S. G. Jung, N. H. Lee, W. K. Seong, W. N. Kang, E.M. Choi, S. I. Lee, "Growth of $MgB_2$ thin films by using a novel laser-assisted chemical vapor deposition technique", Supercond. Sci. Technol. 21, 085017, 2008. https://doi.org/10.1088/0953-2048/21/8/085017
  22. N. H. Lee, S. G. Jung, W. K. Seong, E. M Choi, M. Ranot, W. N. Kang, "Fabrication of $MgB_2$ thin films at various temperature by using laser-assisted chemical vapor deposition" J. Korean Phys. Soc. 55, 600, 2009. https://doi.org/10.3938/jkps.55.600
  23. M. Ranot, W. N. Kang, "$MgB_2$ coated superconducting tapes with high critical current densities fabricated by hybrid physical-chemical vapor deposition", Curr. Appl. Phys. 12, 353, 2012. https://doi.org/10.1016/j.cap.2011.09.003
  24. W. K. Seong, S. Oh, W. N. Kang, "Perfect domain-lattice matching between $MgB_2$ and $Al_2O_3$: single-crystal $MgB_2$ thin films grown on sapphire", Jpn. J. Appl. Phys. 51, 083101-1, 2012.
  25. V. Braccini et al., "High-field superconductivity in alloyed $MgB_2$ thin films", Phys. Rev. B 71, 012504, 2005.
  26. M. Ranot, S. Oh, K. C. Chung and W. N. Kang, "$MgB_2$ coated conductors directly grown on flexible metallic Hastelloy tapes by hybrid physicalechemical vapor deposition", Curr. Appl. Phys. 13, 1808, 2013. https://doi.org/10.1016/j.cap.2013.07.015
  27. M. Ranot, K. Cho K, W. K. Seong W K, S. Oh, K. C. Chung, W. N. Kang ,"Effects of B2H6 flow rate and deposition time on superconducting properties of $MgB_2$/Hastelloy tapes", Physica C 471, 582, 2011. https://doi.org/10.1016/j.physc.2011.07.004
  28. F. Li, T. Guo, K. Zhang, L. Chen, C. Chen, Q. Feng, "Thick polycrystalline $MgB_2$ film on Cu substrate by hybrid physical-chemical vapor deposition", Supercond. Sci. Technol. 19, 1073, 2006. https://doi.org/10.1088/0953-2048/19/10/015
  29. A. V. Pogrebnyakov et al., IEEE Trans. Appl. Supercond. 17 (2007) 2854. https://doi.org/10.1109/TASC.2007.897981
  30. J. M. Rowell, "The widely variable resistivity of $MgB_2$ sample", Supercond. Sci. Technol. 16, R17, 2003. https://doi.org/10.1088/0953-2048/16/6/201
  31. M. Ranot, S. G. Jung, W. K. Seong, N. H. Lee, W. N. Kang, J. Joo, C. J. Kim, B. H. Jun, S. Oh, "Fabrication of SiC-doped $MgB_2$ coated conductors by a simple process", Physica C 470 S1000, 2010. https://doi.org/10.1016/j.physc.2010.02.006
  32. M. Ranot, W. K. Seong, S. G. Jung, W. N. Kang, J. Joo, C. J. Kim, B. H. Jun, S. Oh, "Effect of SiC-Impurity Layer and Growth Temperature on $MgB_2$ Superconducting Tapes Fabricated by HPCVD" Chem. Vap. Depos. 18, 36, 2012. https://doi.org/10.1002/cvde.201106935
  33. W. K. Seong et al., "Growth of Epitaxial $MgB_2$ Thick Films with Columnar Structures by Using HPCVD", Chem. Vapor. Depos. 13, 680, 2007. https://doi.org/10.1002/cvde.200706636
  34. X. X. Xi et al., "$MgB_2$ thin films by hybrid physical-chemical vapor deposition", Physica C, 456, 22, 2007. https://doi.org/10.1016/j.physc.2007.01.029
  35. J. Karpinski et al., "$MgB_2$ single crystals: high pressure growth and physical properties" Supercond. Sci. Technol., 16, 221, 2003. https://doi.org/10.1088/0953-2048/16/2/317
  36. J. Karpinski, S. M. Kazakov, J. Jun, M. Angst, R. Puzniak, A. Wisniewski, and P. Bordet, "Single crystal growth of $MgB_2$ and thermodynamics of Mg-B-N system at high pressure" Physica C 385, 42, 2003. https://doi.org/10.1016/S0921-4534(02)02308-0
  37. S. G. Lee, S. H. Hong, W. K. Seong, and W. N. Kang " Josephson effects in weakly coupled $MgB_2$ intergrain nanobridges prepared by focused ion beam " Appl. Phys. Lett. 95, 202504, 2009. https://doi.org/10.1063/1.3266827
  38. T. Tajima et al., "$MgB_2$ for Application to RF Cavities for Accelerators" IEEE Trans. Appl. Supercond. 17, 1330, 2007. https://doi.org/10.1109/TASC.2007.899876
  39. E. W. Collings, M. D. Sumption, and T. Tajima " Magnesium diboride superconducting RF resonant cavities for high energy particle acceleration " Supercond. Sci. Technol. 17, S595, 2004. https://doi.org/10.1088/0953-2048/17/9/026
  40. T. Masui, S. Lee, and S. Tajima, " Effect of the growing process on the electronic properties of $MgB_2$ single crystals" Physica C 392-396, 281, 2003.
  41. M. N. Kunchur, S. I. Lee, and W. N. Kang "Pair-breaking critical current density of magnesium diboride " Phys. Rev. B 68, 064516, 2003. https://doi.org/10.1103/PhysRevB.68.064516
  42. S. Lee, "Crystal growth of $MgB_2$" Physica C 385, 31, 2003. https://doi.org/10.1016/S0921-4534(02)02323-7
  43. P. C. Canfield et al., "Superconductivity in Dense $MgB_2$ Wires" Phys. Rev. Lett. 86, 2423, 2001 https://doi.org/10.1103/PhysRevLett.86.2423
  44. A.V. Pogrebnyakov et al., "Thickness dependence of the properties of epitaxial $MgB_2$ thin films grown by hybrid physical-chemical vapor deposition", Appl. Phys. Lett. 82, 4319, 2003. https://doi.org/10.1063/1.1583852
  45. Q. Li et al., "Large Anisotropic Normal-State Magnetoresistance in Clean $MgB_2$ Thin Films" Phys. Rev. Lett. 96, 167003, 2006. https://doi.org/10.1103/PhysRevLett.96.167003
  46. B. B. Jin et al., "Dependence of penetration depth, microwave surface resistance and energy gap of $MgB_2$ thin films on their normal-state resistivity " Supercond. Sci. Technol. 18, L1, 2005. https://doi.org/10.1088/0953-2048/18/1/L01
  47. Z. X. Ye, Qiang Li, Y. F. Hu, A. V. Pogrebnyakov, Y. Cui, X. X. Xi, J. M. Redwing and Qi Li, "Electron scattering dependence of dendritic magnetic instability in superconducting $MgB_2$ films" Appl. Phys. Lett. 85, 5284, 2004. https://doi.org/10.1063/1.1827931
  48. S. G. Jung, W. K. Seong, and W. N. Kang," Flux pinning mechanism in single-crystalline $MgB_2$ thin films ", J. Phys. Soc. Jpn. 82, 114712, 2013. https://doi.org/10.7566/JPSJ.82.114712
  49. Z. X. Shi et al., "Out-of-plane and in-plane anisotropy of upper critical field in $MgB_2$", Phys. Rev. B 68, 04514, 2003.
  50. E. Mezzetti et al., "Control of the critical current density in $YBa_2Cu_3O_{7-{\delta}}$ films by means of intergrain and intragrain correlated defects " Phys. Rev. B 60, 7623, 1999. https://doi.org/10.1103/PhysRevB.60.7623
  51. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, "Vortices in high-temperature superconductors" Rev. Mod. Phys. 66, 1125, 1994. https://doi.org/10.1103/RevModPhys.66.1125
  52. H. Kitaguchi, A. Matsumoto, H. Kumakura, T. Doi, H. Yamamoto, K. Saitoh, H. Sosiati, and S. Hata, Appl. Phys. Lett. 85, 2842 (2004). https://doi.org/10.1063/1.1805195
  53. S. G. Jung, W. K. Seong, N. H. Lee, M. Ranot, and W. N. Kang, "Possible Origin of Double-Peak Behavior of the Pinning-Force Density in Thick $MgB_2$ Films with Columnar Structures", J. Korean Phys. Soc. 53, 727, 2008. https://doi.org/10.3938/jkps.53.727
  54. D. H. Kim, T. J. Hwang, W. K. Seong and W. N Kang, "Crossover Fields in grain-boundary flux pinning in Magnesium Diboride films with columnar grains" Int. J. Mod. Phys. B 23, 3459, 2009. https://doi.org/10.1142/S0217979209062797
  55. K. Takahashi, T. Atsumi, N. Yamamoto M. Xu, H. Kitazawa and T. Ishida, "Superconducting anisotropy and evidence for intrinsic pinning in single crystalline $MgB_2$", Phys. Rev. B 66, 012501, 2002.
  56. H. Hilgenkamp and J. Mannhart, "Grain boundaries in high-$T_c$ superconductor", Rev. Mod. Phys.74, 485, 2002. https://doi.org/10.1103/RevModPhys.74.485
  57. R. M. Scanlan, W. A. Fietz and E. F. Koch, "Flux pinning centers in superconducting $Nb_3Sn$", J. Appl. Phys. 46, 2244, 1975. https://doi.org/10.1063/1.321816
  58. S. G. Jung, W. K. Seong, and W. N. Kang, "Effect of columnar grain boundaries on flux pinning in $MgB_2$ films", J. Appl. Phys. 111, 053906, 2012. https://doi.org/10.1063/1.3689157
  59. Leonardo R. E. Cabral, D. A. Landinez Tellez, P. H. Kes, and J. Albino Aguiar, "Pinning-force measurements in $Bi_2Sr_2CaCu_2O_{8+y}$", J. Magn. Magn. Mater. 177, 513, 1998.
  60. J. L. Wang, R. Zeng, J. H. Kim, L. Lu, and S. X. Dou, "Effects of C substitution on the pinning mechanism of $MgB_2$", Phys. Rev. B 77, 174501, 2008. https://doi.org/10.1103/PhysRevB.77.174501
  61. J. Chen et al., "Enhancement of flux pinning and high-field critical current density in carbon-alloyed $MgB_2$ thin films", Phys. Rev. B 74, 174511, 2006. https://doi.org/10.1103/PhysRevB.74.174511
  62. S. Y. Xu et al., "High critical current density and vortex pinning of epitaxy $MgB_2$ thin films", Phys. Rev. B 68, 224501, 2003. https://doi.org/10.1103/PhysRevB.68.224501
  63. E. J. Kramer, "Scaling law for flux pinning in hard superconductor", J. Appl. Phys. 44, 1360, 1973. https://doi.org/10.1063/1.1662353
  64. D. Dew-Hughes, "The role of grain boundaries in determining $J_c$ in high-field high-current superconductors", Philos. Mag. B 55, 459, 1987. https://doi.org/10.1080/13642818708217956
  65. S. Oh and K. Kim, "A consistent description of scaling law for flux pinning in $Nb_3Sn$ strain based on the Kramer Model", IEEE Trans. Appl. Supercond. 17, 3898, 2007. https://doi.org/10.1109/TASC.2007.908463
  66. S. X. Dou et al., "Mechanism of enhancement in electromagnetic properties of $MgB_2$ by Nano SiC doping", Phys. Rev. Lett. 98, 097002, 2007. https://doi.org/10.1103/PhysRevLett.98.097002
  67. G. J. Xu, J. C. Grivel, A. B. Abrahamsen and N. H. Andersen, "Enhancement of the irreversibility field in bulk $MgB_2$ bt $TiO_2$ nanoparticle addition", Physica C 406, 95, 2004. https://doi.org/10.1016/j.physc.2004.03.235
  68. H. Narayan, R. K. Bhatt, H. M. Agrawal, R. P. S. Kushwaha and H. Kishan, "Swift heavy ion irradiation of $MgB_2$ thin films: a comparison between gold and silver ion irradiation", J. Phys.:Condens. Matter 19, 136209, 2007. https://doi.org/10.1088/0953-8984/19/13/136209
  69. Tarantini C et al., "Effects of neutron irradiation on polycrystalline $Mg^{11}B_2$", Phys. Rev. B 73, 134518, 2006. https://doi.org/10.1103/PhysRevB.73.134518
  70. E. Martinez et al., "Flux pinning force in bulk $MgB_2$ with variable grain size", Phys. Rev. B 75, 134515, 2007. https://doi.org/10.1103/PhysRevB.75.134515
  71. B. Roas, L. Schultz and G. Saemann-Ischenko, "Anisotropy of the critical current density in epitaxial $YBa_2Cu_2O_x$ films" Phys. Rev. Lett., 64, 479, 1990. https://doi.org/10.1103/PhysRevLett.64.479
  72. S. G. Jung, N. H. Lee, W. K. Seong, K. H. Cho, W. N. Kang, and S. Oh, " Observation of strong intrinsic pinning in $MgB_2$ films", Supercond. Sci. Technol. 24, 075003 ,2011.07. https://doi.org/10.1088/0953-2048/24/7/075003
  73. M. Ranot, and W. N. Kang, "Thickness dependence of grain growth orientation in $MgB_2$ films fabricated by hybrid physical-chemical vapor deposition", Journal of the Korea Institute of Applied Superconductivity and Cryogenics 15,9, 2013.
  74. W. K. Seong, "Growth mechanism and superconductivity in $MgB_2$ nano-structures and single-crystalline $MgB_2$ thin film", PhD Thesis Sungkyunkwan University, 2009.
  75. D. Larbalestier, A. Gurevich, D. M. Feldmann, A. Polyanskii, "High-Tc superconducting materials for electric power applications", Nature (London), vol. 414, pp. 368, 2001. https://doi.org/10.1038/35104654
  76. Chromik S et al., "Nanogranular $MgB_2$ thin films on SiC buffered Si substrates prepared by an in situ method", Supercond. Sci. Technol. 19, 577, 2006. https://doi.org/10.1088/0953-2048/19/6/027
  77. Q. W. Yao, X. L. Wang, J. Horvat and S. X Dou, "Cu and nano-SiC doped $MgB_2$ thick films on Ni substrates processed using a very short-time in situ reaction", Physica C 402, 38, 2004. https://doi.org/10.1016/j.physc.2003.08.008
  78. Y. Zhao, S. X. Dou, M. Ionescu and P. Munroe, "Significant improvement of activation energy in $MgB_2$/$MgB_2$Si multilayer films", Appl. Phys. Lett. 88, 012502, 2006. https://doi.org/10.1063/1.2159572
  79. K-I. Takahashi, H. Kitaguchi and T. Doi, "Artificial pinning enhancement by multilayer nanostructures in $MgB_2$ / Ni thin films", Appl. Phys. Lett. 92, 102510, 2008. https://doi.org/10.1063/1.2896305
  80. M. Ranot, W. K. Seong, S. G. Jung, N. H. Lee, W. N. Kang, J. H. Joo, Y. Zhao, and S. X. Dou, "Enhancement of the critical current density of $MgB_2$ thick films by Ag- and Cu-impurity layers", Physica C 469, 1563, 2009. https://doi.org/10.1016/j.physc.2009.05.223
  81. C. Shekhar, R. Giri, R. S. Tiwari, O. N. Srivastava and S. K. Malik, "High critical current density and improved pinning in bulk $MgB_2$ synthesized by Ag addition", J Appl. Phys. 101, 043906, 2007. https://doi.org/10.1063/1.2655340
  82. M. Ranot, W. K. Seong, S. G. Jung, and W. N. Kang, "Influence of Ag- or Cu-impurity layers on the microstructure and flux-pinning properties of $MgB_2$ thick films", J. Korean Phys. Soc. 54, 2343, 2009. https://doi.org/10.3938/jkps.54.2343
  83. W. K. Yeoh and S. X. Dou, "Enhancement of Hc2 and $J_c$ by carbon-based chemical doping", Physica C, vol. 456, pp. 170, 2007. https://doi.org/10.1016/j.physc.2007.01.024
  84. S-G. Jung, S. W. Park, W. K. Seong, M. Ranot, W. N. Kang, Y. Zhao, S. X. Dou, "A simple method for the enhancement of $J_c$ in $MgB_2$ thick films with an amorphous SiC impurity layer," Supercond. Sci. Technol. 22, 075010, June 2009. https://doi.org/10.1088/0953-2048/22/7/075010
  85. R. Zeng, S. X. Dou, L. Lu, W. X. Li, J. H. Kim, "Thermal-strain-induced enhancement of electromagnetic properties of SiC-$MgB_2$ composite", Appl. Phys. Lett. 94, 042510, 2009. https://doi.org/10.1063/1.3078396
  86. W. B. K. Putri, D. H. Tran, B. Kang, M. Ranot, J. H. Lee, N. H. Lee, W. N. Kang, "Effect of Different Thickness Crystalline SiC-Buffer Layers on Superconducting Properties and Flux Pinning Mechanism of MgB2 Films", IEEE Trans. Magn. 50, 9000305, 2014.
  87. W. B. K. Putri, B. Kang, M. Ranot, J .H . Lee, W. N. Kang, "A possibility of enhancing Jc in MgB2 film grown on metallic Hastelloy tape with the use of SiC buffer layer", Progress in Superconductivity and Cryogenics 16, 20, 2014. https://doi.org/10.9714/psac.2014.16.2.020
  88. W. B. K. Putri, D. H. Tran, O. Y. Lee, W. N. Kang, T. Miyanaga, D. S. Yang, B. Kang, "Effect of different thickness crystalline SiC buffer layers on the ordering of $MgB_2$ films probed by extended x-ray absorption fine structure", J. Appl. Phys. 115, 093901, 2014. https://doi.org/10.1063/1.4867297
  89. Pogrebnyakov et al., "Erratum: Properties of $MgB_2$ thin films with carbon doping", Appl. Phys. Lett. 85, 2017, 2004. https://doi.org/10.1063/1.1782258
  90. Y. Zhu et al., "Nanoscale disorder in high critical field, carbon-doped $MgB_2$ hybrid physical-chemical vapor deposition thin films ", Appl. Phys. Lett. 91, 082513, 2007. https://doi.org/10.1063/1.2775088
  91. C G Zhuang et al., "Significant improvement of the high-field properties of carbon-doped $MgB_2$ films by hot-filament-assisted hybrid physical-chemical vapor deposition using methane as the doping source", Supercond. Sci. Technol. 21, 082002, 2008. https://doi.org/10.1088/0953-2048/21/8/082002
  92. Y Zhu et al., "Nanoscale disorder in pure and doped $MgB_2$ thin films", Supercond. Sci. Technol. 23, 095008, 2010. https://doi.org/10.1088/0953-2048/23/9/095008
  93. W. Dai et al., "High-field properties of carbon-doped $MgB_2$ thin films by hybrid physical-chemical vapor deposition using different carbon sources", Supercond. Sci. Technol. 24, 125014, 2011. https://doi.org/10.1088/0953-2048/24/12/125014
  94. M. Ranot, O. Y. Lee, W. N. Kang, "Significant enhancement of critical current density by effective carbon-doping in MgB2 thin films", Journal of the Korea Institute of Applied Superconductivity and Cryogenics 15,12, 2013. https://doi.org/10.9714/psac.2013.15.2.012

Cited by

  1. The Magnetic Relaxation of MgB2Thin Films Grown by Hybrid Physical–Chemical Vapor Deposition vol.26, pp.4, 2016, https://doi.org/10.1109/TASC.2016.2526021
  2. Sintering process and critical current density of low activation Mg 11 B 2 superconductors from low temperature to high temperature vol.527, 2016, https://doi.org/10.1016/j.physc.2016.05.010
  3. The isotope effect of boron on the carbon doping and critical current density of Mg11B2 superconductors vol.5, pp.3, 2017, https://doi.org/10.1039/C6TC05086G
  4. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor vol.19, pp.3, 2015, https://doi.org/10.9714/psac.2017.19.3.040
  5. MgB2-Based Superconductors: Structure and Properties vol.122, pp.12, 2015, https://doi.org/10.1134/s0031918x2112005x