• Title/Summary/Keyword: (1, 1)-knot

Search Result 312, Processing Time 0.023 seconds

The Tunnel Number One Knot with Bridge Number Three is a (1, 1)-knot

  • Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.67-71
    • /
    • 2005
  • We call K a (1, 1)-knot in M if M is a union of two solid tori $V_1\;and\;V_2$ glued along their boundary tori ${\partial}V_1\;and\;{\partial}V_2$ and if K intersects each solid torus $V_i$ in a trivial arc $t_i$ for i = 1 and 2. Note that every (1, 1)-knot is a tunnel number one knot. In this article, we determine when a tunnel number one knot is a (1, 1)-knot. In other words, we show that any tunnel number one knot with bridge number 3 is a (1, 1)-knot.

  • PDF

Knot Removal for the efficient Visualization Implementations (효율적 시각화 구현을 위한 Knot 제거 알고리즘)

  • 김혁진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, the problem of removing the interior knots from a B-spline is discussed. We present a new strategy for reducing the number of knots for splines. The method is the efficient for the visualization implementations and easy-to-use algorithms, and we need not to determine the knot sequence that will be removed.

  • PDF

Forbidden Detour Number on Virtual Knot

  • Yoshiike, Shun;Ichihara, Kazuhiro
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.205-212
    • /
    • 2021
  • We show that the forbidden detour move, essentially introduced by Kanenobu and Nelson, is an unknotting operation for virtual knots. Then we define the forbidden detour number of a virtual knot to be the minimal number of forbidden detour moves necessary to transform a diagram of the virtual knot into the trivial knot diagram. Some upper and lower bounds on the forbidden detour number are given in terms of the minimal number of real crossings or the coefficients of the affine index polynomial of the virtual knot.

ON THE 2-BRIDGE KNOTS OF DUNWOODY (1, 1)-KNOTS

  • Kim, Soo-Hwan;Kim, Yang-Kok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.197-211
    • /
    • 2011
  • Every (1, 1)-knot is represented by a 4-tuple of integers (a, b, c, r), where a > 0, b $\geq$ 0, c $\geq$ 0, d = 2a+b+c, $r\;{\in}\;\mathbb{Z}_d$, and it is well known that all 2-bridge knots and torus knots are (1, 1)-knots. In this paper, we describe some conditions for 4-tuples which determine 2-bridge knots and determine all 4-tuples representing any given 2-bridge knot.

On the Polynomial of the Dunwoody (1, 1)-knots

  • Kim, Soo-Hwan;Kim, Yang-Kok
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.223-243
    • /
    • 2012
  • There is a special connection between the Alexander polynomial of (1, 1)-knot and the certain polynomial associated to the Dunwoody 3-manifold ([3], [10] and [13]). We study the polynomial(called the Dunwoody polynomial) for the (1, 1)-knot obtained by the certain cyclically presented group of the Dunwoody 3-manifold. We prove that the Dunwoody polynomial of (1, 1)-knot in $\mathbb{S}^3$ is to be the Alexander polynomial under the certain condition. Then we find an invariant for the certain class of torus knots and all 2-bridge knots by means of the Dunwoody polynomial.

Polynomials and Homotopy of Virtual Knot Diagrams

  • Jeong, Myeong-Ju;Park, Chan-Young;Park, Maeng Sang
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.145-161
    • /
    • 2017
  • If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.

Studies on Strength of Netting (1) The Decrease in Strength of Netting Twines by Knotting (그물감의 강도에 관한 연구 (1) 그물실의 강도가 매듭에서 감소하는 기구)

  • KIM Dai An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1976
  • 1) The decrease in strength of netting twines at the knot may be regarded to be due mainly to the frictional force acting on the tip of the knot. The knot strength T may be given by $$T=\frac{T_0}{1+{\mu}\frac{s}{\rho}\varrho^{\mu\theta}$$ were $T_0$ is the tensile strength of unknotted netting twines, $\mu$ the coefficient of friction beween two netting twines forming a knot, s the contact length between the tip and the netting twine compressing it, $\rho$ the radius of curvature of the compressing, and $\theta$ the angle at which the compressing rubs with another one in the vicinity of the opposite tip. 2) Knots are arranged in order of strength as follows : the reef knot pulled lengthwise $\risingdotseq$ the trawler knot pulled breadtwise the reef knot pulled breadthwise.

  • PDF

Biological Control of Mulberry Root Knot Nematode Meloidogyne incognita by Trichoderma harzianum

  • Sukumar, J.;Padma, S.D.;Bongale, U.D.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Trichoderma harzianum-THN1 parasitising the egg masses of root knot nematode Meloidogyne incognita was isolated from galled mulberry roots and evaluated for its potential to control root knot disease. In pot experiments root galling was reduced and leaf yield increased significantly following soil treatment with T. harzianum-THN1. The extracts obtained from the soils inoculated with T. harzianum-THN1 drastically inhibited the hatching of nematode eggs and the effect was irreversible even after the eggs were transferred to fresh water. The fungus was equally effective in controlling the disease in nematode infested mulberry garden under field conditions which was significant over the most commonly used egg parasitic fungus Paecilomyces lilacinus. The disease reduction recorded with T. harzianum was on par with the plants treated with the nematicide Carbofuran. The results suggest that T. harzianum- THN1 could be used as a potent ecofriendly biocontrol agent against M. incognita in mulberry without any residual toxicity to silkworms. T. harzianum- THN1 can form an important component of integrated disease management package in mulberry cultivation.