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ON THE 2-BRIDGE KNOTS OF DUNWOODY (1, 1)-KNOTS

Soo Hwan Kim and Yangkok Kim∗

Abstract. Every (1, 1)-knot is represented by a 4-tuple of integers (a, b,
c, r), where a > 0, b ≥ 0, c ≥ 0, d = 2a+b+c, r ∈ Zd, and it is well known
that all 2-bridge knots and torus knots are (1, 1)-knots. In this paper,
we describe some conditions for 4-tuples which determine 2 -bridge knots
and determine all 4-tuples representing any given 2-bridge knot.

1. Introduction

In this note all manifolds will be assumed to be closed, connected and ori-
entable and all (1, 1)-knots are non-oriented if there is no special reference.
In [6] Dunwoody introduced a family of 3-manifolds depending on six integer
parameters which induce a class of knots. It was shown that all knots induced
by Dunwoody manifolds are (1, 1)-knots in [21]. Moreover all (1, 1)-knots are
induced by Dunwoody manifolds in [4]. In [12] and [21] a type of 4-tuples
representing all 2-bridge knots was described. We here determine a type of
4-tuples representing all 2-bridge knots and their dual and mirror images from
a different point of view. We also recall that a type of 4-tuples representing the
torus knot T (p, q) was determined in [1] and [15] when either q ≡ ±1 mod p

or q ≡ ±2 mod p.

Let (V1, V2) be a Heegaard splitting of a 3-manifold M with genus n. A
properly embedded disc D in the handlebody V2 is called a meridian disc of
V2 if cutting V2 along D yields a handlebody of genus n − 1. A collection of
n mutually disjoint meridian discs {Di} in V2 is called a complete system of
meridian discs of V2 if cutting V2 along ∪iDi gives a 3-ball. Let αi denote the
1-sphere ∂Di which lies in the closed orientable surface ∂V1 = ∂V2 of genus n.
The system is said to be a Heegaard diagram of the 3-manifold M and denoted
by (V1;α1, α2, . . . , αn). Moreover, the system (V2;β1, β2, . . . , βn) is called a
dual Heegaard diagram of the 3-manifold M if {Di} is a complete system of
n mutually disjoint meridian discs in V1 and βi is the 1-sphere ∂Di which
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lies in the closed orientable surface ∂V1 = ∂V2 of genus n. In other words,
(V2;β1, β2, . . . , βn) is the dual Heegaard diagram of (V1;α1, α2, . . . , αn).

Let M be a 3-manifold and K a knot in M . Then the pair (M,K) has a
(1, 1)-decomposition if there exists a Heegaard splitting of genus one (V1,K1)∪φ

(V2,K2) of (M,K) such that (V1;α1) is a Heegaard diagram of M and K1 ⊂ V1

and K2 ⊂ V2 are properly embedded trivial arcs, where φ is an attaching
homeomorphism. We call the knot K an (1, 1)-knot. Note that M turns out
to be a lens space L(p, q), and we assume to include S3 = L(1, 0) but not
S1 × S2 = L(0, 1) in this note. By the dual (1, 1)-decomposition of (M,K) we
mean that (V2;β1) is the dual Heegaard diagram of M . Thus the (1, 1)-knot
K does not change under such a dual process. We refer to [1], [2], [4]-[6],
[8]-[10], [12]-[24] for definitions and fundamental results on (1, 1)-knots and
(1, 1)-decompositions.

In Section 2, we introduce a set D of 4-tuples of integers (a, b, c, r) such
that a > 0, b ≥ 0, c ≥ 0, r ∈ Zd, where d = 2a + b + c, inducing the (1, 1)-
decomposition of (M,K) determined by two permutations. Furthermore we
determine conditions for a 4-tuple (a, 0, 1, r) to be contained in D and give
the formula for its dual decomposition. In Section 3, we determine the forms
of 4-tuples in D representing all 2-bridge knots and their mirror images by
using the method of crystallization in [11]. As an application, for any 2-bridge
knot K, we can show that there exist two (1, 1)-decompositions representing
K. Generally we find other forms of 4-tuples representing K by means of the
dual process and homeomorphic property, which are different from the forms
for K obtained from Theorem 3.1. As a consequence, we show that there exist
at most four (1, 1)-decompositions representing K, which has also been shown
in [16] by using Heegaard splittings of the exteriors of 2-bridge knots.

2. The (1, 1)-decompositions and its dual decompositions

We introduce the (1, 1)-decompositions of (M,K) determined by two per-
mutations and a 4-tuple of integers (a, b, c, r) such that a > 0, b ≥ 0, c ≥ 0,
r ∈ Zd, where d = 2a+ b+ c, as follows.

Let {m+,m−} be a set of circles with each other different orientations, and
X+ = {1, 2, . . . , d} and X− = {1, 2, . . . , d} sets of d vertices in m+ and m−,
respectively. We define each of 2-cycles in the permutation α to be the ends of
curves connecting m+ and m− or themselves as the rule of Figure 1:

α = (1, d)(2, d− 1)(3, d− 2) · · · (a, d− a+ 1)

(a+ 1, a+ c+ 1) · · · (a+ b, a+ c+ b)

(a+ b+ 1, a+ 1) · · · (a+ b+ c, a+ c)

(1, d)(2, d− 1) · · · (a, d− a+ 1))

and

β = (1, 1− r)(2, 2− r) · · · (j, j − r) · · · (d, d− r),
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where all numbers are under mod d. We note that a disk m, called a meridian
disk, is obtained by the corresponding points in m+ and m− via β. For example
(r, r − r) means that the number r of m+ is identified with the number r − r =
0 = d in m−. Thus αβ determines the disjoint simple closed curves on the
genus one solid torus, denoted by H, with the meridian disk m.

We consider a trivial arc K1 in H such that K1 ∩ ∂H = ∂K1, and ∂K1

is situated inside the bigons determined by 2-cycles (1, d) and (1, d) as shown
Figure 1.

K1

d c

b

a
1

d

a
1

-

-

-m m+ -

Figure 1. A trivial arc K1 and the solid torus H determined
by α and β

Assume that |αβ| is the number of disjoint cycles in αβ and that T is the
number of disjoint simple closed curves on ∂H. Since consecutive two cycles in
αβ determine a simple closed curve on ∂H, we have |αβ| = 2T. Thus a set of
4-tuples of integers inducing the (1, 1)-decompositions of (M,K) is

D = {(a, b, c, r)|a > 0, b ≥ 0, c ≥ 0, d = 2a+ b+ c, r ∈ Zd, |αβ| = 2}.

For each (a, b, c, r) in D, we denote the corresponding (1, 1)-decomposition and
(1, 1)-knot of (M,K) by the Dunwoody (1, 1)-decomposition D(a, b, c, r) and the
Dunwoody (1, 1)-knot K(a, b, c, r), respectively. For each (a, b, c, r) ∈ D, M is to
be a lens space because of T = 1. By [4], every (1, 1)-knot can be represented
by the Dunwoody (1, 1)-knot K(a, b, c, r). However this representation need
not be unique. For example, both K(1, 3, 4, 7) and K(2, 1, 4, 4) represent a
pretzel knot P (−2, 3, 7) which is a (1, 1)-knot as was mentioned in [21]. In the
following, we give a condition for (a, 0, 1, r) to lie in D and the formula for the
dual decomposition of D(a, 0, 1, r).

Theorem 2.1. A 4-tuple (a, 0, 1, r) lies in D if and only if there is a positive

integer k such that 2kr ≡ a mod(2a+ 1) or (2k − 1)r ≡ a mod(2a+ 1).

Proof. Let m and l be a meridian disk determined by β and a simple closed
curve determined by αβ, respectively, of D(a, 0, 1, r). We note that two vertices

i and 1 − i are connected in m+ and, i and (2r + 1)− i are connected in
m− if i 6= a + 1 and i 6= r + a+ 1. We denote these connections by writing

edges [i, 1− i] and [i, (2r + 1)− i]. Then there are 2a+ 1 edges on D(a, 0, 1, r)
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Figure 2. D(a, 0, 1, r)

inclusive of the edge [a + 1, r + a+ 1] connecting m+ and m− (See Figure 2
where all numbers are under modulo 2a+ 1). Moreover a simple closed curve
on D(a, 0, 1, r) can be expressed by a closed paths of edges. For example a
closed path is of the form:

[i, 1− i], [1− i, (2r + 1)− (1− i)], . . . , [(2r + 1)− i, i].

For simplicity we denote the above closed path by

1− i → (2r + 1)− (1− i) → · · · → i

obtained by writing the terminal vertex of each edge. The 2mth number and

the (2m− 1)th number in the path starting from i are m(2r + 1)− (m− 1)− i

and (m− 1)− (m − 1)(2r + 1) + i respectively if it does not contain the edge
[a+1, r+ a+ 1]. Similarly the 2mth number and the (2m−1)th number in the

path starting from i arem−(m−1)(2r+1)−i and (m− 1)(2r + 1)− (m− 1) + i

respectively if it does not contain the edge [a+1, r + a+ 1]. We now claim that
the number of curves in D(a, 0, 1, r) is 1. Equivalently a closed path from 0 to
1 has 2a+ 1 vertices. There are two cases as follows:

Case i) The closed path contains the edge [a+ 1, r + a+ 1]. That is,

(∗) 0 → (2r + 1)− 1 → · · · → a+ 1︸ ︷︷ ︸
2k vertices

→ r + a+ 1 → · · · → 1︸ ︷︷ ︸
2ℓ−1 vertices

(i) For 0 → (2r + 1)− 1 → · · · → a+ 1,

k(2r + 1)− k + 1 + 0 ≡ a+ 1 mod(2a+ 1)

or

2kr ≡ a mod(2a+ 1).

(ii) For r + a+ 1 → · · · → 1,

(ℓ− 1)(2r + 1)− (ℓ − 1) + (r + a+ 1) ≡ 1 mod(2a+ 1)

or

(2ℓ− 1)r ≡ −a mod(2a+ 1).

The path (∗) has 2k+(2ℓ−1) = 2a+1 vertices and so k+ ℓ = a+1. Hence the
relation (2ℓ−1)r ≡ −a mod(2a+1) in (ii) is equivalent to 2kr ≡ a mod(2a+1)
in (i).
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Case ii) The path contains the edge [r + a+ 1, a+ 1]. That is,

(∗∗) 0 → · · · → r + a+ 1︸ ︷︷ ︸
2k−1 vertices

→ a+ 1 → · · · → 1︸ ︷︷ ︸
2ℓ vertices

(i) For 0 → · · · → r + a+ 1,

(k − 1)− (k − 1)(2r + 1) + 0 ≡ r + a+ 1 mod(2a+ 1)

or

(2k − 1)r ≡ a mod(2a+ 1).

(ii) For a+ 1 → · · · → 1,

ℓ(2r + 1)− (ℓ − 1)− (a+ 1) ≡ 1 mod(2a+ 1)

or

2ℓr ≡ −a mod(2a+ 1).

The path (∗∗) has (2k−1)+2ℓ = 2a+1 vertices and so k+ℓ = a+1. Hence the
relation 2ℓr ≡ −a mod(2a+1) in (ii) is equivalent to (2k−1)r ≡ a mod(2a+1)
in (i). �

For any (1, 1)-knot K in S3, let (S3,K) = (V1,K1) ∪φ (V2,K2) be a (1, 1)-
decomposition of K. Then there exists the Dunwoody (1, 1)-decomposition
D(a, b, c, r) of K such that D(a, b, c, r) has the Heegaard diagram (V1, α1) of
(V1,K1), where α1 is the oriented simple closed curve l on ∂V1 determined by
αβ. This means that D(a, b, c, r) can be regarded as one in Figure 1. By the
definition of the dual process, we can obtain the dual (1, 1)-decomposition of
D(a, b, c, r), denoted by Du(a, b, c, r) or D(a′, b′, c′, r′), which has the Heegaard
diagram (V2, β1) of (V2,K2). Then β1 is the oriented simple closed curve on ∂V2

as the image of meridian curve m on V1 by φ and denoted by l′. In fact, this
is understood easily from the attaching homeomorphism φ defined the images
of simple closed curve l and meridian curve m on V1 by the meridian curve
m′ and simple closed curve l′ on V2, respectively. We now find the dual (1, 1)-
decomposition of D(a, 0, 1, r) in D. Let D(a, 0, 1, r) be a (1, 1)-decomposition
of (S3,K). Then there exist three types of areas as follows (see Figure 2 where
all indices are taken under modulo 2a+ 1):

(1) two bigons [1, 2a+ 1] and [r, r + 1] at m+ and m− respectively,
(2) 2(a− 1) quadrilaterals [i, i + 1, 2a+ 1− i, 2a+ 2− i] at m+ and [i+ r,

i+ r + 1, r − i+ 1, r − i] at m− where 1 ≤ i ≤ a− 1,
(3) an octagon [a, a+ 2, a+ 1, r + a+ 1, r + a+ 2, r + a, r + a+ 1, a+ 1].

For simplicity we denote the quadrilateral [i, i + 1, 2a + 2 − i, 2a + 2 − i +

1] at m+ by the line with endpoints î and ̂2a+ 1− i, and the quadrilateral

[i+ r, i+ r + 1, r − i+ 1, r − i] at m− by the line with endpoints r̂ + i and
̂r + 2a− i+ 1 to get a graph as shown in Figure 3.

Through the process that changes {m, l} into {l′,m′}, the roles of m and l in
each area will be interchanged in Du(a, 0, 1, r), so if 1 in the bigon [1, 2a+1] is a
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Figure 3. Three areas of D(a, 0, 1, r)

starting point inD(a, 0, 1, r), then 2a+1will be a starting point inDu(a, 0, 1, r).
Similarly, the point r + 1 in the bigon [r, r + 1] is going to situate on r′ in
Du(a, 0, 1, r). On D(a, 0, 1, r), we note that a is the number of areas (1) and
(2) that is connected from the bigon [1, 2a+1] to a quadrilateral with (a, a+2)
which is to be a side of an octagon. Therefore, on Du(a, 0, 1, r), a′ determined
by l′ is equal to the number of areas (1) and (2) that is connected along parts
of m from the bigon [2a+1, 1] to a quadrilateral which is connected with a side
of an octagon. Since each area is preserved in D(a, 0, 1, r) and Du(a, 0, 1, r),
we have c′ = 2a+1− a′. We also note that the r′th term of the following cycle
is the number r + 1 or r + 1 :

0 = 2a+ 1 → · · · →

r′th term
↓

r + 1 or r + 1 → · · ·

which is a cycle along l starting from 0 = 2a + 1 and determine m′ on
Du(a, 0, 1, r). Vice versa we can obtain Du(a, 0, c, r) from D(a, 0, c, r) by the
dual process of above. Summarizing, we formulate as follows.

Theorem 2.2. Let D(a′, 0, c′, r′) be the dual of D(a, 0, 1, r). Then a′ is the

positive integer m(< a) satisfying one of the following conditions:
(1) 2r(m− 1) ≡ a mod(2a+ 1),
(2) 2r(m− 1) ≡ a+ 1 mod(2a+ 1),
(3) −2(m− 2)r ≡ r + a mod(2a+ 1),
(4) −2(m− 2)r ≡ r + a+ 1 mod(2a+ 1).
Furthermore c′ = 2a− 2a′ + 1 and r′ is as follows:

r′ =





2m if (2m− 1)r ≡ 0 mod(2a+ 1)

2m− 1 if (2m− 1)r + 1 ≡ 0 mod(2a+ 1)

s+ t if sr ≡ a mod(2a+ 1) and tr ≡ −a mod(2a+ 1), where s, t < a.

Proof. We note that in the three areas form of D(a, 0, 1, r), two points î and

̂2a+ 1− i are connected in the left part, and two points r̂ + i and ̂r + 2a− i+ 1
are connected in the right part (See Figure 3). As in the proof of Theorem 2.1,
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a cycle starting from 0̂ is of the form:

0̂ → 2̂r − 0 → ̂(2a+ 1)− 2r → ̂2r − ((2a+ 1)− 2r) → · · ·

where all numbers are under modulo 2a+1. We note that the 2mth point and

the (2m+1)th point in a cyclic starting from 0̂ is ̂−(m− 2) · 2r and ̂(m− 1) · 2r
respectively. As we see in the argument above a′ is the number of edges in a

sequence starting the point 0̂ and ending â, â+ 1, r̂ + a or ̂r + a+ 1. That
is, a′ is the positive integer m such that (i) (m − 1) · 2r ≡ a or a + 1 or (ii)
−(m− 2) · 2r ≡ r + a or r + a+ 1 under modulo 2a+ 1.

By the argument above r′ is the number of vertices in a path starting the
point 0 = 2a + 1 and ending r + 1 or r + 1 (See Figure 2). We first consider
the case that the path has the vertex r + 1 or r + 1 before crossing the edge
connecting a+1 and r + a+ 1. In this case (m−1)−(m−1)(2r+1)+0≡ r+1 or
m(2r+1)−(m−1)−0≡ r+1. If (m−1)−(m−1)(2r+1)+0≡ r+1 or equivalently
(2m − 1)r + 1 ≡ 0 mod(2a + 1), then the number of vertices are 2m − 1. If
m(2r + 1)− (m− 1) − 0 ≡ r + 1 or equivalently (2m − 1)r ≡ 0 mod(2a + 1),
then the number of vertices are 2m. We now consider the other one case by
case as follows:

Case 1) The closed path contains the edge [a+ 1, r + a+ 1]. That is,

0 → (2r + 1)− 1 → · · · → a+ 1︸ ︷︷ ︸
2k vertices

→ r + a+ 1 → · · · → r + 1︸ ︷︷ ︸
2ℓ vertices

(i) For 0 → (2r + 1)− 1 → · · · → a+ 1,

k(2r + 1)− k + 1 + 0 ≡ a+ 1 mod(2a+ 1)

or

2kr ≡ a mod(2a+ 1).

(ii) For r + a+ 1 → · · · → r + 1,

ℓ− (ℓ − 1)(2r + 1)− (r + a+ 1) ≡ r + 1 mod(2a+ 1)

ℓ− (ℓ − 1)(2r + 1)− (r + a+ 1) ≡ r + 1 mod(2a+ 1)

or

2ℓr ≡ a mod(2a+ 1).

Thus the number of all vertices in the path (∗) is 2k + 2ℓ.
Case 2) The closed path contains the edge [a+ 1, r + a+ 1]. That is,

0 → (2r + 1)− 1 → · · · → a+ 1︸ ︷︷ ︸
2k vertices

→ r + a+ 1 → · · · → r + 1︸ ︷︷ ︸
2ℓ−1 vertices

(i) For 0 → (2r + 1)− 1 → · · · → a+ 1, 2kr ≡ a mod(2a+ 1).
(ii) For r + a+ 1 → · · · → r + 1,

(ℓ − 1)(2r + 1)− (ℓ− 1) + (r + a+ 1) ≡ r + 1 mod(2a+ 1)
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or

2(ℓ− 1)r ≡ −a mod(2a+ 1).

We note that (i) and (ii) are not compatible.
Case 3) The path contains the edge [r + a+ 1, a+ 1]. That is,

0 → · · · → r + a+ 1︸ ︷︷ ︸
2k−1 vertices

→ a+ 1 → · · · → r + 1︸ ︷︷ ︸
2ℓ−1 vertices

(i) For 0 → · · · → r + a+ 1,

(k − 1)− (k − 1)(2r + 1) + 0 ≡ r + a+ 1 mod(2a+ 1)

or

(2k − 1)r ≡ a mod(2a+ 1).

(ii) For a+ 1 → · · · → r + 1,

(ℓ− 1)− (ℓ− 1)(2r + 1) + (a+ 1) ≡ r + 1 mod(2a+ 1)

or

(2ℓ− 1)r ≡ a mod(2a+ 1).

Thus the number of all vertices in the path (∗) is (2k − 1) + (2ℓ− 1).
Case 4) The path contains the edge [r + a+ 1, a+ 1]. That is,

0 → · · · → r + a+ 1︸ ︷︷ ︸
2k−1 vertices

→ a+ 1 → · · · → r + 1︸ ︷︷ ︸
2ℓ vertices

(i) For 0 → · · · → r + a+ 1,

(k − 1)− (k − 1)(2r + 1) + 0 ≡ r + a+ 1 mod(2a+ 1)

or

(2k − 1)r ≡ a mod(2a+ 1).

(ii) For a+ 1 → · · · → r + 1,

ℓ(2r + 1)− (ℓ− 1)− (a+ 1) ≡ r + 1 mod(2a+ 1)

or

(2ℓ− 1)r ≡ −a mod(2a+ 1).

We note that (i) and (ii) are not compatible. �

Example 1. Let D(a′, 0, c′, r′) be the dual of D(5, 0, 1, 2). Then −2(3−2) ·2 ≡
2 + 5 mod(2a + 1). Thus a′ = 3 and so c′ = 2 · 5 − 2 · 3 + 1 = 5. Moreover
(2 · 3 − 1) · 2 + 1 ≡ 0 mod(2 · 5 + 1). Thus r′ = 2 · 3 − 1 = 5. Therefore
D(a′, 0, c′, r′) = D(3, 0, 5, 5) (See Figure 4).
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Figure 4. D(5, 0, 1, 2) and its dual D(3, 0, 5, 5)

3. The (1, 1)-decompositions of 2-bridge knots

Since every 2-bridge knot is invertible, the 2-bridge knot b(p, q) is equivalent
to b(p, q − p), where p is odd. By b

∗(p, q) we denote a mirror image b(p,−q)
of b(p, q). However the classification of the 2-bridge knot follows from that of
the lens space up to orientation-preserving homeomorphism as follows:

−L(p, q) = L(−p, q) = L(p,−q), L(p, q) = L(−p,−q) = L(p, q + kp)

for any integer k. Here −L(p, q) denotes the same manifold as L(p, q) but
with orientation reversed. Thus we can assume that all 2-bridge knots are of
the form b(d, h) such that d is odd and h is even. We note that b(d,−h) =
b(d, 2d−h) for each h < d. In this section, we show that the 4-tuples (a, 0, 1, r)
in D are representing all 2-bridge knots b(2a+ 1, 2r) in S3 and that there are
at most four (1, 1)-decompositions for each 2-bridge knot by using the dual
decomposition of D(a, 0, 1, r). It was proved in [5] Theorem 4.2(iv) that the
(1, 1)-knot K(2k−2, 0, 1, 1) is equivalent to the 2-bridge knot b(4k−3, 2). From
now on we write D2(a, b, c, r) for the Heegaard diagram D2(a, b, c, r, 0) inducing
Dunwoody manifold.

Theorem 3.1. A D(a, 0, 1, r) is a (1, 1)-decomposition of (S3,K), where K is

the 2-bridge knot b(2a+ 1, 2r) in S3.

Proof. Let b(2a+ 1, 2r) be a 2-bridge knot with (2a + 1, 2r) = 1. Then (2a+
1)sa + 2rta = a for some integers s, t. That is, 2tar ≡ a mod(2a + 1) and
so (a, 0, 1, r) ∈ D by Theorem 2.1. Note that the lens space L(p, q) is the
2-fold cyclic branched covering of S3 branched over a unique 2-bridge knot or
link of type (p, q). Therefore it is sufficient to show that the Heegaard diagram
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D2(a, 0, 1, r) represents the 2-fold cyclic branched covering of S3 over the 2-
bridge knot b(d, 2r), where d = 2a + 1. Since D2(a, 0, 1, r) is the genus two
Heegaard diagram, we obtain the crystallization associated with D2(a, 0, 1, r),
denoted Γ(d, r), by using the method of Lemmas 3 and 4 in [11] as (a) and
(b) in Figure 5. On the other hand, the crystallization Γ(d, r) can be obtained

Figure 5. The crystallization associated with D2(a, 0, 1, r)

directly from Figure 5(b) by the following process. Let C1 and C2 be two
circles with 2d vertices on the plane, corresponding to the circles 1 and 2 of
Figure 5(b), and A a circle with 2 vertices on the same plane, corresponding
to a middle dotted line of Figure 5(b). Then we draw 2d − 1 parallel lines
connecting C1 and C2, and a line connecting A and Ci for each i = 1, 2 as in
Figure 6. Finally, each point of, say C1, Ci for each i = 1, 2 is identified by a
point following after going 2r edges along counterclockwise orientation around
C1, connecting to C2 or A, say C2, and finally going 2r edges along clockwise
orientation around C2. Note that points that arrive inside A in the process are
fixed. If we define a pair of identified two points by the process to be the same
number or alphabet, we obtain the crystallization Γ(d, r) from Figure 6. From
the facts of [7] and [3] we know that the crystallization Γ(d, r) constructed
above represents a Dunwoody manifold with a genus two Heegaard splitting.
Since every genus two Heegaard splitting is 2-symmetric, there is an axis in the
interior of Ci for each i = 1, 2 as depicted in Figure 6. We denote the axes in
the interiors of three circles C1, C2, and A by X1, X2, and XA respectively.
In fact, let A1 (resp. A2) be a point in C1 (resp. C2) which is connected to
XA. Then the fixed points of X1 (resp. X2) in the interior of C1 (resp. C2) are
points obtained by a counterclockwise rotation of d − r edges from A1 (resp.
A2) and a clockwise rotation of r edges from A1 (resp. A2). In the sense of
[7], let E be the set of edges in the interiors of C1 and C2 joining vertices by
the reflections with respect to the axes X1 and X2 and D the set of edges in
the exteriors of C1, C2 and A. Then we obtain the 2-bridge knot K so that X1
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Figure 6. The crystallization Γ(d, r) and its three axes

and X2 are bridges and the edges of E ∪D ∪XA give only undercrossings. We
can easily see that the knot K is the 2-bridge knot b(d, 2r) from the Schubert
diagram. �

Corollary 3.2. D(a, 0, 1, (2a+ 1)− r) is the mirror image of D(a, 0, 1, r) for
two 4-tuples (a, 0, 1, r) and (a, 0, 1, (2a+ 1)− r) in D.

Proof. By Theorem 3.1, D(a, 0, 1, r) is the 2-bridge knot b(2a + 1, 2r) and
D(a, 0, 1, (2a+ 1)− r) is the 2-bridge knot b((2a+ 1), 2(2a+ 1)− 2r). Now we
just note that b((2a+1), 2(2a+1)− 2r) = b((2a+1),−2r) is the mirror image
of b(2a+ 1, 2r). �

By Theorem 3.1 and the fact that the 2-fold cyclic branched covering of S3

branched over a unique knot b(2a + 1, 2r) is the lens space L(2a + 1, 2r), we
have the following.

Corollary 3.3. D2(a, 0, 1, r) is homeomorphic to D2(a
′, 0, 1, r′) if and only if

a = a′ and 4rr′ ≡ ±1 mod(2a+ 1).

For a given 2-bridge knot K in S3, the (0, 2)-decomposition of (S3,K) is the
Heegaard splitting of genus zero B1 ∪P B2 such that B1 ∩ K = b1 ∪ b2 and
B2 ∩ K = b3 ∪ b4, where b1 ∪ b2 and b3 ∪ b4 are properly embedded trivial
arcs in B1 and B2, respectively and P : (∂B2, ∂(b3 ∪ b4)) → (∂B1, ∂(b1 ∪ b2))
is an attaching homeomorphism. Then b1, b2, b3, b4 are the closures of the
components of K − ∂B1 or K − ∂B2. Let V1 = B1 ∪ N(b3, B2), K1 = b1 ∪
b3 ∪ b2, V2 = Cl(B2 \ N(b3, B2)), K2 = b4. Then each Vi is a solid torus
and Ki is a trivial arc in Vi for i = 1, 2. Hence (S3,K) admits the (1, 1)-
decomposition (V1,K1) ∪φ (V2,K2), where φ : (∂V2, ∂K2) → (∂V1, ∂K1) is an
attaching homeomorphism extended by P . Moreover, by using b1, b2, b4 for
b3, we can obtain other three (1, 1)-decompositions of (S3,K). Thus there are
four (1, 1)-decompositions of (S3,K) for any 2-bridge knot K in S3.
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LetK be a 2-bridge knot b(2a+1, 2r) in S3. Then there is a (1, 1)-decomposi-
tion D(a, 0, 1, r) of (S3,K) = (V1,K1)∪φ (V2,K2) such that K(a, 0, 1, r) repre-
sents the 2-bridge knot K by Theorem 3.1. Since D(a, 0, 1, r) is a weakly K-
reducible, there exist a meridian diskD1 in V1 meeting withK1 at a single point
and a K2-cancelling disk D2 properly embedded in V2 such that ∂D1∩∂D2 = ∅
and |∂D1∩ l| = 1 as examples in Figure 7. In fact, Figure 7 depicts D(2, 0, 3, 3)
and its dual decomposition D(3, 0, 1, 2) representing a 2-bridge knot b(7, 4) and
their K-compressing disks. Let m and l be the meridian and longitude curves

Figure 7. K-compressing disks of D(3, 0, 1, 2) and its dual D(2, 0, 3, 3)

in V1 determined by β and αβ, respectively, as in Figure 1. Then, in Figure
8, if b = 1, ∂D1 meets with a part line (a + 1, r − a) of l at a single point
and is disjoint with m. By duality, let m′ and l′ be meridian and longitude in
V2 corresponding to l and m in V1, respectively, by attaching map φ. Then,
on Du(a, b, c, r), ∂φ(D1) meets with m′ at a single point and is disjoint with
l′. Therefore we have ∂φ(D1) ∩ ∂φ(D2) = ∅, and so Du(a, 0, 1, r) is a weakly
K-reducible. Note that D(a, 0, c, r) is equal to D(a, c, 0, r) for each c ≥ 1, up
to isotopy moves. In the following theorem, we only consider D(a, b, c, r) with
c 6= 0.

Theorem 3.4. Let D(a, b, c, r) be a (1, 1)-decomposition represent a 2-bridge
knot and D(a′, b′, c′, r′) the its dual decomposition. Then {b = 0 and b′ = 0}
and {c = 1 or c′ = 1}.

Theorem 3.5. For any 2-bridge knot K in S3, there exist at most four (1, 1)-
decompositions of (S3,K) determined by four parameters in D.

Proof. Let K be the 2-bridge knots b(2a+ 1, 2r). We note that if b(2a+ 1, 2r)
is amphicheiral, then b(2a + 1, 2r) = b(2a + 1,−2r) or 2r(−2r) ≡ −4r2 ≡
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Figure 8. A meridian disk D1 and (V1,K1)

1 mod(2a+1). If b(2a+1, 2r) is not amphicheiral, then 2r has a unique inverse
2s 6= 2r. That is, 2r·2s ≡ 1 mod 2a+1 in a unit group of Z2a+1. By Theorem 3.1
D(a, 0, 1, r) and D(a, 0, 1, s) represent b(2a+ 1, 2r). Thus we have four (1, 1)-
decompositions for b(2a+1, 2r), namelyD(a, 0, 1, r), Du(a, 0, 1, r), D(a, 0, 1, s),
andDu(a, 0, 1, s). If b(2a+1, 2r) is amphicheiral, b(2a+1, 2r) = b(2a+1, 2(2a+
1)−2r). Then by Theorem 3.1 D(a, 0, 1, r) and D(a, 0, 1, (2a+1)−r) represents
b(2a+1, 2r). Thus we have four (1, 1)-decompositions for b(2a+1, 2r), namely
D(a, 0, 1, r), Du(a, 0, 1, r), D(a, 0, 1, (2a+1)−r), andDu(a, 0, 1, (2a+1)−r). �

We note that the result of Theorem 3.5 has been shown in [16] by us-
ing Heegaard splittings of the exteriors of 2-bridge knots. As an applica-
tion of Theorem 3.4, we now determine the (1, 1)-decompositions for all 2-
bridge knots of type b(11, 6). We note that 6 has the inverse 2 in a unit
group of Z11. That is, 6 · 2 ≡ 1 mod 11. By Theorem 3.1 D(5, 0, 1, 3) and
D(5, 0, 1, 1) represent b(11, 6). Thus we have four (1, 1)-decompositions for
b(11, 6), namely D(5, 0, 1, 3), Du(5, 0, 1, 3) = D(2, 0, 7, 7), D(5, 0, 1, 1), and
Du(5, 0, 1, 1) = D(5, 0, 1, 10).

Corollary 3.6. Let b(2a+1, 2r) be a 2-bridge knot. Then all 4-tuples (a, 0, c, r)
in D representing b(2a+ 1, 2r) have the same value 2a+ c = 2a+ 1.

Proof. By Theorem 3.1, there are at most four 4-tuples (a, 0, c, r) ∈ D repre-
senting b(2a+1, 2r). Here we just note that D(a, 0, c, r) and Du(a, 0, c, r) have
the same value 2a+ c = 2a+ 1 by Theorem 2.2. �

Corollary 3.6 shows that all 4-tuples (a, 0, c, r) in D representing b(2a+1, 2r)
have the same value 2a+ c = 2a+1. We propose a conjecture that all 4-tuples
(a, b, c, r) in D representing a given (1, 1)-knot in the lens space has the same
value 2a+ b+ c.
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Remark. In [14], we denote that numbers b+ c, d and p have the same parities
and so the number d = 2a+b+c of the 6-tuple (d, a, b, c, r, s) or 4-tuple (a, b, c, r)
in the paper should be assumed as odd type.
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