DOI QR코드

DOI QR Code

INVERTIBLE KNOT CONCORDANCES AND PRIME KNOTS

  • Kim, Se-Goo (Department of Mathematics, School of Science, Kyung Hee University)
  • Received : 2010.03.05
  • Accepted : 2010.03.15
  • Published : 2010.03.25

Abstract

Silver and Whitten proved that every knot in $S^3$ is invertibly concordant to a hyperbolic knot by a series of Nakanishi's construction. We prove that every knot in $S^3$ is invertibly concordant to a nonhyperbolic prime knot by a simple one step satellite construction.

Keywords

References

  1. R. C. Kirby and W. B. R. Lickerish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979), 437-441. https://doi.org/10.1017/S0305004100056280
  2. J. Levine, Doubly sliced knots and doubled disk knots, Michigan Math. J. 30 (1983), no. 2, 249-256. https://doi.org/10.1307/mmj/1029002856
  3. C. Livingston, Homology cobordisms of 3-manifolds, knot concordances, and prime knots, Pacific J. Math. 94 (1981), no. 1, 193-206. https://doi.org/10.2140/pjm.1981.94.193
  4. R. Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 1, 271-288.
  5. R. Myers, Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), no. 2, 115-127. https://doi.org/10.1016/0166-8641(93)90038-F
  6. Y. Nakanishi, Primeness of links, Math. Sem. Notes Kobe Univ. 9 (1981), 415-440.
  7. D. Ruberman, Doubly slice knots and the: Casson-Gordon invariants, Trans. Amer. Math. Soc. 279 (1983), no. 2, 569-588. https://doi.org/10.1090/S0002-9947-1983-0709569-5
  8. D. Ruberman, Seifert surfaces of knots in $S^4$, Pacific J. Math. 145 (1990), no. 1, 97-116. https://doi.org/10.2140/pjm.1990.145.97
  9. H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23-32. https://doi.org/10.1093/qmath/1.1.23
  10. D. Silver and W. Whitten, Hyperbolic covering knots, Algebr. Geom. Topol. 5 (2005), 1451-1469 (electronic). https://doi.org/10.2140/agt.2005.5.1451
  11. T. Soma, Hyperbolic, fibred links and fibre-concordances, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 2, 283-294. https://doi.org/10.1017/S0305004100062174
  12. N. W. Stoltzfus, Algebraic computations of the integral concordance and double null concordance group of knots, Knot theory (Proc. Sem., Plans-sur-Box, 1977), pp.274-290, Lecture Notes in Math. 685, (J.C. Hausmann, ed.), Springer-Verlag. Berlin, 1978.
  13. D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971), 240-256. https://doi.org/10.1007/BF02566842
  14. E. C. Zeeman, Twisting Spun knots. Trans. Amer. Math. Soc. 115 (1965), 471-495. https://doi.org/10.1090/S0002-9947-1965-0195085-8