• Title/Summary/Keyword: $hfO_x$

Search Result 150, Processing Time 0.026 seconds

Properties of Dy-doped $La_2O_3$ buffer layer for Fe-FETs with Metal/Ferroelectric/Insulator/Si structure

  • Im, Jong-Hyun;Kim, Kwi-Jung;Jeong, Shin-Woo;Jung, Jong-Ill;Han, Hui-Seong;Jeon, Ho-Seung;Park, Byung-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.140-140
    • /
    • 2009
  • The Metal-ferroelectric-semiconductor (MFS) structure has superior advantages such as high density integration and non-destructive read-out operation. However, to obtain the desired electrical characteristics of an MFS structure is difficult because of interfacial reactions between ferroelectric thin film and Si substrate. As an alternative solution, the MFS structure with buffer insulating layer, i.e. metal-ferroelectric-insulator-semiconductor (MFIS), has been proposed to improve the interfacial properties. Insulators investigated as a buffer insulator in a MFIS structure, include $Ta_2O_5$, $HfO_2$, and $ZrO_2$ which are mainly high-k dielectrics. In this study, we prepared the Dy-doped $La_2O_3$ solution buffer layer as an insulator. To form a Dy-doped $La_2O_3$ buffer layer, the solution was spin-coated on p-type Si(100) wafer. The coated Dy-doped $La_2O_3$ films were annealed at various temperatures by rapid thermal annealing (RTA). To evaluate electrical properties, Au electrodes were thermally evaporated onto the surface of the samples. Finally, we observed the surface morphology and crystallization quality of the Dy-doped $La_2O_3$ on Si using atomic force microscopy (AFM) and x-ray diffractometer (XRD), respectively. To evaluate electrical properties, the capacitance-voltage (C-V) and current density-voltage (J-V) characteristics of Au/Dy-doped La2O3/Si structure were measured.

  • PDF

Fabrication of Microlens Integrated Silicon Structure for Optical Interconnects (광연결을 위한 마이크로 렌즈가 집적된 실리콘 구조 제작)

  • Min, Eun-Gyeong;Song, Yeong-Min;Lee, Yong-Tak;Yu, Jae-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.491-492
    • /
    • 2009
  • We have fabricated a microlens integrated silicon (Si) structure for optical interconnects. To form microlenses, the Si wafer was wet-etched with $SiN_x$ mask in a HF:$HNO_3:C_2H_4O_2$ solution and then the holes were filled with a AZ9260 photoresist. The focal length of microlens increased in proportional to its radius of curvature (ROC). For the ROC of $100-161{\mu}m$, the focal lengths were obtained approximately between $160{\mu}m$ and $310{\mu}m$, in an agreement with the simulated values using a ray tracing method.

  • PDF

Fabrication of YBCO films in MOD processing using F-free Y & Cu precursor solution (F-free Y & Cu 전구용액을 이용한 YBCO 박막 제조)

  • Kim, Young-Kuk;Yoo, Jai-Moo;Ko, Jae-Woong;Chung, Kook-Chae;Kim, Young-Jun;Han, Bong-Soo;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.15-18
    • /
    • 2006
  • A new precursor solution wilt low fluorine content was synthesized for MOD processing of coated conductors. In this study, the precursor solution for MOD processing was synthesized using F-free yttrium and copper precursor. It was shown that crack-free and uniform precursor films were formed after calcination in humidified oxygen atmosphere. Less than 2 hours were required to finish the calcination process. The relatively gradual weight loss during the calcination process is attributed to the feasibility of fast calcination profile. The calcined precursor film was converted to a YBCO film without any secondary phases after annealing in wet $Ar/O_2$ atmosphere. Fully converted film shows uniform microstructure and high critical current density. $(Jc=2.7MA/cm^2) $.

The Etch Characteristics of TiN Thin Film Surface in the CH4 Plasma (CH4 플라즈마에 따른 TiN 박막 표면의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$ and $HfO_2$) of TiN thin films in the $CH_4$/Ar inductively coupled plasma. The maximum etch rate of $274\;{\AA}/min$ for TiN thin films was obtained at $CH_4$(80%)/Ar(20%) gas mixing ratio. At the same time, the etch rate was measured as function of the etching parameters such as RF power, Bias power, and process pressure. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4$ containing plasmas.

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

BLYP and mPW1PW91 Calculated Structures and IR Spectra of the Stereoisomers of Tetra-O-methylsulfinylcalix[4]arene

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3247-3251
    • /
    • 2010
  • Molecular structures of the various conformers for the four stereoisomers of tetra-t-butyl-tetra-O-methylsulfinylcalix[4]arene (1) were optimized using DFT BLYP and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculation methods. We have analyzed the total electronic and Gibbs free energies and normal vibrational frequencies of 16 different structures from four major conformations (cone (CONE), partial cone (PC), 1,2-alternate (1,2-A), 1,3-alternate (1,3-A)) of the four stereoisomers [1(rccc), 1(rcct), 1(rctt), 1(rtct)]. The mPW1PW91/6-31G(d,p) calculations suggested that the $1(rccc)_{CONE}$, $1(rcct)_{PC}$, $1(rctt)_{PC}$, and $1(rtct)_{1,3-A}$ were the most stable conformations of the respective stereoisomers. These outcomes are in accordance with the experimental structures obtained from X-ray crystallography. The electrostatic repulsion between the sulfinyl and methoxy groups is a primary factor for the relative stabilities of the four different conformations. The IR spectra of the most stable conformers [$1(rccc)_{CONE}$, $1(rcct)_{PC}$, $1(rctt)_{PC}$, $1(rtct)_{1,3-A}$] of each stereoisomer were compared to each other.

Mössbauer Study of Al0.2CoFe1.8O4 Ferrite Powders (Mössbauer 분광법에 의한 Al0.2CoFe1.8O4분말의 자기적 특성 연구)

  • Chae, Kwang-Pyo;Lee, Jae-Gwang;Kweon, Hyuck-Su;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.231-236
    • /
    • 2003
  • The $Al_{0.2}$CoF $e_{1.8}$ $O_4$ferrite powders have been prepared by the sol-gel method. The crystallographic and magnetic properties of the sample depending on annealing temperature have been investigated by means of x-ray diffraction, FE SEM, Mossbauer spetroscopy and vibrating sample magnetometry. The x-ray diffractions of all samples annealing temperature above 873 K clearly indicate the presence of spinel structure, the lattice constant decrease from 8.425 $\AA$ at 873 K to 8.321 $\AA$ at 1073 K, whereas the particle size rapidly increase from about 39 nm at 673 K to about 108 nm at 1073 K. The Mossbauer spectra annealed above 873 K could be fitted as the superposition of two sextets due to F $e^{3+}$ at A-site and B-site. The isomer shift (IS) and quadruple splitting (QS) values nearly constant with annealing temperature, whereas magnetic hyperfine field ( $H_{hf}$) of A-site slowly in crease and that of B-site fastly increases with increasing annealing temperature. The magnetic behaviour of powders shows that the saturation magnetization increase from 0.7 emu/g at 473 K to 72.1 emu/g at 1073 K while the coercivity decrease from 0.951 kOe at 673 K to 0.374 kOe at 1073 K with increasing annealing temperature.

Potential Energy Curves and Geometrical Structure Variations for [MX4]2- : M=Ni(II), Pd(II), Pt(II); X=Cl-, Br-) Dissociating into ([MX3]- + X-) : Ab Initio Study

  • Park, Jong-Keun;Kim, Bong-Gon;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1795-1802
    • /
    • 2005
  • Potential energy curves and internuclear (M-X) distance variations for dissociation reactions of $[MX_4]^{2-}$ into ($[MX_3]^-$ + $X^-$) have been calculated using ab initio Hartree-Fock (HF), second order M$\ddot{o}$ller-Plesset perturbation (MP2), and Density Functional Theory (DFT) methods with a triple zeta plus polarization (TZP) basis set. The equilibrium geometrical structures of $[MX_4]^{2-}$ are optimized to tetrahedral geometry for $[NiX_4]^{2-}$ and square planar geometry for ($[PdX_4]^{2-}$ and $[PtX_4]^{2-}$). The bond (M-X) distances of $[NiCl_4]^{2-}$, $[NiBr_4]^{2-}$, $[PdCl_4]^{2-}$, $[PdBr_4]^{2-}$, $[PtCl_4]^{2-}$, and $[PtBr_4]^{2-}$ at the DFT level are 2.258, 2.332, 2.351, 2.476, 2.367, and 2.493 $\AA$, respectively. The dissociation energies for the bond dissociation of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) at the DFT level are found to be 4.73 eV for $[NiCl_4]^{2-}$, 4.89 eV for $[NiBr_4]^{2-}$, 4.93 eV for $[PdCl_4]^{2-}$, 5.57 eV for $[PdBr_4]^{2-}$, 5.44 eV for $[PtCl_4]^{2-}$, and 5.87 eV for $[PtBr_4]^{2-}$. As the (M${\cdot}{\cdot}{\cdot}$X) distance of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) increases, the distance variation (Rt) of trans (M-X) bond at the trans-position is shorter than those (Rc) of two cis (M-X) bonds at the cisposition. Simultaneously the atomic charge variation of trans-X atom is more positive than those of equilibrium $[MX_4]^{2-}$ structures, while the variation of leaving X group is more positive.

Effects of $CH_{2}F_{2}$ and $H_2$ flow rates on process window for infinite etch selectivity of silicon nitride to PVD a-C in dual-frequency capacitively coupled plasmas

  • Kim, Jin-Seong;Gwon, Bong-Su;Park, Yeong-Rok;An, Jeong-Ho;Mun, Hak-Gi;Jeong, Chang-Ryong;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.250-251
    • /
    • 2009
  • For the fabrication of a multilevel resist (MLR) based on a very thin amorphous carbon (a-C) layer an $Si_{3}N_{4}$ hard-mask layer, the selective etching of the $Si_{3}N_{4}$ layer using physical-vapor-deposited (PVD) a-C mask was investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in $CH_{2}F_{2}/H_{2}/Ar$ plasmas : HF/LF powr ratio ($P_{HF}/P_{LF}$), and $CH_{2}F_{2}$ and $H_2$ flow rates. It was found that infinitely high etch selectivities of the $Si_{3}N_{4}$ layers to the PVD a-C on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The $H_2$ and $CH_{2}F_{2}$ flow ratio was found to play a critical role in determining the process window for infinite $Si_{3}N_{4}$/PVDa-C etch selectivity, due to the change in the degree of polymerization. Etching of ArF PR/BARC/$SiO_x$/PVDa-C/$Si_{3}N_{4}$ MLR structure supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the $Si_{3}N_{4}$ layer.

  • PDF

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.