• 제목/요약/키워드: $ZrO_2$-Based composites

검색결과 23건 처리시간 0.02초

FABRICATION OF ZrO2-BASED NANOCOMPOSITES FOR TRANSURANIC ELEMENT-BURNING INERT MATRIX FUEL

  • MISTARIHI, QUSAI;UMER, MALIK A.;KIM, JOON HUI;HONG, SOON HYUNG;RYU, HO JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.617-623
    • /
    • 2015
  • $ZrO_2$-based composites reinforced with 6.5 vol.% of carbon foam, carbon fiber, and graphite were fabricated using spark plasma sintering, and characterized using scanning electron microscopy and X-ray diffractometry. Their thermal properties were also investigated. The microstructures of the reinforced composites showed that carbon fiber fully reacted with $ZrO_2$, whereas carbon foam and graphite did not. The carbothermal reaction of carbon fiber had a negative effect on the thermal properties of the reinforced $ZrO_2$ composites because of the formation of zirconium oxycarbide. Meanwhile, the addition of carbon foam had a positive effect, increasing the thermal conductivity from 2.86 to $3.38Wm^{-1}K^{-1}$ at $1,100^{\circ}C$. These findings suggest that the homogenous distribution and chemical stability of reinforcement material affect the thermal properties of $ZrO_2$-based composites.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive)

  • 신용덕;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

$ZrO_2$를 이차상으로한 복합체의 기계적 특성 (A Study on the Mechanical Properties of $ZrO_2$ Based Composite)

  • 신동우;김종희
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.76-84
    • /
    • 1985
  • Mechanical property enhancing mechanisms of $Al_2O_3-ZrO_2$ two phase ceramic composites were studied for several compositions of different $ZrO_2$/$Al_2O_3$ ratio. Microstructural analysis of $Al_2O_3-ZrO_3$(pure) composites indicated that pre-existing microcrack due to larger $ZrO_2$ particle at grain boundary extended along alumina grain boundaries within process zone. Microcracks also nucleated when very small $ZrO_2$ particles at the grain boundaries transformed to monoclinic phase at near of main crack tip. These types of microcracks could contribute to the toughening achieved by creating additional crack surface area during crack propagation. Microstructural analyses also showed that the average grain size and abnormal grain size of $Al_2O_3$ were decreased with increasing $ZrO_2$ vol% in $Al_2O_3$ matrix. As a result it could be concluded as follows In TEX>$Al_2O_3-ZrO_3$(pure) system 1. Microcrack nucleation (stress-induced microcracking) and extension was effective mechanism for absorpiton of fracture energy 2, More narrow distribution and smaller grain size of $Al_2O_3$ due to $ZrO_2$particles mainly contributed to main-tatin the strength and hardness.

  • PDF

질화규소-지르코니아 복합체의 기계적 및 내마모 특성 (Mechanical and tribological characterization of $Si_{3}N_{4}-ZrO_{2}$ composites)

  • 김성호;이수완;엄호성;정용선
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.217-223
    • /
    • 1999
  • 본 연구에서는 질화규소에 지르코니아 첨가량에 따른 효과를 조사하였다. 0 wt%~40 wt%의 지르코니아를 포함하는 세라믹 복합체 재료를 토대로 하는 질화규소를 $1750^{\circ}C$에서 172 MPa의 질소가스압으로 한 시간동안 유지하는 조건으로 hot isostatic pressing (HIP)하였다. 소결된 시편의 기계적 특성과 마모 특성을 조사하였다. 질화 규소-지르코니아 복합체는 지르코니아 양이 증가함에 따라 경도와 굽힘강도는 감소하였으나 밀도는 증가하였다. 그리고, 지르코니아 첨가량이 증가함에 따른 공기 중에서의 마모량은 감소하였으며, 공기 중에서의 마모 거동은 microcracking에 유관하였다.

  • PDF

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

$MoSi_2$ 복합재료의 특성 (Properties of $MoSi_2$ Based Composite Materials)

  • 이상필;조경서;이진경;배동수
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.93-98
    • /
    • 2009
  • The mechanical properties of $MoSi_2$ based composites containing various types of reinforcement, such as SiC, $ZrO_2$, and W, were investigated, based on detailed examinations of their microstructures. $MoSi_2$ based composites were fabricated at a temperature of $1350^{\circ}C$ using a hot-press device. The volume fraction of SiC and $ZrO_2$ particles in this composite system was fixed as 20%. The volume fraction of three types of W particles was changed from 10% to 30%. The characteristics of the $MoSi_2$ based composites were determined by means of optical microscopy and a three-point bending test. The addition of W particles to the $MoSi_2$ powders exhibited a sufficient improvement in the microstructure and mechanical property of the sintered $MoSi_2$ materials, compared to those of SiC and $ZrO_2$ particles. In particular, W/$MoSi_2$ composites containing W particles of 20 vol% represented a good flexural strength of about 530MPa at room temperature, accompanying a relative density of about 92%. The flexural strength of the W/$MoSi_2$ composites tended to decrease with an increase in the average size of the W particles.