DOI QR코드

DOI QR Code

FABRICATION OF ZrO2-BASED NANOCOMPOSITES FOR TRANSURANIC ELEMENT-BURNING INERT MATRIX FUEL

  • MISTARIHI, QUSAI (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • UMER, MALIK A. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • KIM, JOON HUI (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • HONG, SOON HYUNG (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • RYU, HO JIN (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.01.05
  • Accepted : 2015.05.08
  • Published : 2015.10.25

Abstract

$ZrO_2$-based composites reinforced with 6.5 vol.% of carbon foam, carbon fiber, and graphite were fabricated using spark plasma sintering, and characterized using scanning electron microscopy and X-ray diffractometry. Their thermal properties were also investigated. The microstructures of the reinforced composites showed that carbon fiber fully reacted with $ZrO_2$, whereas carbon foam and graphite did not. The carbothermal reaction of carbon fiber had a negative effect on the thermal properties of the reinforced $ZrO_2$ composites because of the formation of zirconium oxycarbide. Meanwhile, the addition of carbon foam had a positive effect, increasing the thermal conductivity from 2.86 to $3.38Wm^{-1}K^{-1}$ at $1,100^{\circ}C$. These findings suggest that the homogenous distribution and chemical stability of reinforcement material affect the thermal properties of $ZrO_2$-based composites.

Keywords

Acknowledgement

Supported by : KUSTAR-KAIST Institute

References

  1. K. Hesketh, B. Lance, O. Koberl, D. Porsch, T. Wolf, G. Schlosser, H. Mineo, T. Okubo, O. Sato, S. Uchikawa, Y. Sagayama, T. Yamamoto, R. Chawla, E. Sartori, Plutonium Management in the Medium Term, NEA4451, OECD NEA, 2003.
  2. T. Yu, X. Wu, J.S. Xie, M. Qin, Z.F. Li, Z.J. Liu, H.W. Chen, A study on the burn-up characteristics of inert matrix fuels, Prog. Nucl. Energy 78 (2015) 341-345. https://doi.org/10.1016/j.pnucene.2014.09.002
  3. C. Degueldre, J.M. Paratte, Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 274 (1999) 1-6. https://doi.org/10.1016/S0022-3115(99)00060-4
  4. C. Lombardi, L. Luzzi, E. Padovani, F. Vettraino, Thoria and inert matrix fuels for a sustainable nuclear power, Prog. Nucl. Energy 50 (2008) 944-953. https://doi.org/10.1016/j.pnucene.2008.03.006
  5. C. Degueldre, W. Wiesenack, Zirconia inert matrix fuel for plutonium and minor actinides management in reactors and as an ultimate waste form, Mater. Res. Soc. Symp. Proc. 1104 (2008) 52-62.
  6. Ch. Hellwig, M. Streit, P. Blair, T. Tverberg, F.C. Klaassen, R.P.C. Schram, F. Vettraino, T. Yamashita, Inert matrix fuel behaviour in test irradiations, J. Nucl. Mater. 352 (2006) 291-299. https://doi.org/10.1016/j.jnucmat.2006.02.065
  7. K. Lipkina, A. Savchenko, M. Skupov, A. Glushenkov, A. Vatulin, O. Uferov, Y. Ivanov, G. Kulakov, S. Ershov, S. Maranchak, A. Kozlov, E. Maynikov, K. Konova, Metallic inert matrix fuel concept for minor actinides incineration to achieve ultra-high burn-up, J. Nucl. Mater. 452 (2014) 378-381. https://doi.org/10.1016/j.jnucmat.2014.04.030
  8. C. Degueldre, T. Arima, Y.W. Lee, Thermal conductivity of zirconia based inert matrix fuel: use and abuse of the formal models for testing new experimental data, J. Nucl. Mater. 319 (2003) 6-14. https://doi.org/10.1016/S0022-3115(03)00127-2
  9. K. McCoy, C. May, Enhanced thermal conductivity oxide nuclear fuels by co-sintering with BeO: II. Fuel performance and neutronics, J. Nucl. Mater. 375 (2008) 157-167. https://doi.org/10.1016/j.jnucmat.2007.10.014
  10. N. Nitani, T. Yamashita, T. Matsuda, S.-I. Kobayashi, T. Ohmichi, Thermophysical properties of rock-like oxide fuel with spineleyttria stabilized zirconia system, J. Nucl. Mater. 274 (1999) 15-22. https://doi.org/10.1016/S0022-3115(99)00077-X
  11. K. Idemitsu, T. Arima, Y. Inagaki, S. Torikai, M.A. Pouchon, Manufacturing of zirconia microspheres doped with erbia, yttria and ceria by internal gelation process as a part of a cermet fuel, J. Nucl. Mater. 319 (2003) 31-36. https://doi.org/10.1016/S0022-3115(03)00130-2
  12. P.G. Medvedev, M.J. Lambregts, M.K. Meyer, Thermal conductivity and acid dissolution behavior of $MgO-ZrO_{2}$ ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 349 (2006) 167-177. https://doi.org/10.1016/j.jnucmat.2005.10.009
  13. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (2011) 569-582. https://doi.org/10.1038/nmat3064
  14. J. Klett, R. Hardy, E. Romine, C. Walls, T. Burchell, Highthermal- conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon 38 (2000) 953-973. https://doi.org/10.1016/S0008-6223(99)00190-6
  15. G.H. Zhou, S.W. Wang, J.K. Guo, Z. Zhang, The preparation and mechanical properties of the unidirectional carbon fiber reinforced zirconia composite, J. Eur. Ceram. Soc. 28 (2008) 787-792. https://doi.org/10.1016/j.jeurceramsoc.2007.07.005
  16. J. Ai, G. Zhou, H. Zhang, P. Liu, Z. Wang, S. Wang, Mechanical properties and microstructure of two dimensional carbon fiber reinforced zirconia composites prepared by hotpressing, Ceram. Int. 40 (2014) 835-840. https://doi.org/10.1016/j.ceramint.2013.06.076
  17. S. Guo, Thermal and electrical properties of hot pressed short pitch-based carbon fiber-reinforced $ZrB_{2}-SiC$ matrix composites, Ceram. Int. 39 (2013) 5733-5740. https://doi.org/10.1016/j.ceramint.2012.12.091
  18. P. He, D. Jia, T. Lin, M. Wang, Y. Zhou, Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int. 36 (2010) 1447-1453. https://doi.org/10.1016/j.ceramint.2010.02.012
  19. S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H.-C. Kuan, P. Majewski, J. Ma, L. Zhang, Melt compounding with graphene to develop functional, high-performance elastomers, Nanothechnology 24 (2013) 165601-165615. https://doi.org/10.1088/0957-4484/24/16/165601
  20. M.D. Doganci, B.U. Sesli, H.Y. Erbil, B.P. Binks, I.E. Salama, Liquid marbles stabilized by graphite particles from aqueous surfactant solutions, Colloids Surf. A Physicochem. Eng. Asp. 384 (2011) 417-428. https://doi.org/10.1016/j.colsurfa.2011.04.027
  21. D.R. Gaskell, Introduction to the Thermodynamics of Materials, fifth ed., Taylor & Francis, New York, 2008, pp. 133-135.
  22. I. Brian, O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973, pp. 116, 162, 916, 918.
  23. M.D. Sacks, C.-A. Wang, Z. Yang, A. Jain, Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors, J. Mater. Sci. 39 (2004) 6057-6066. https://doi.org/10.1023/B:JMSC.0000041702.76858.a7
  24. L.-M. Berger, P. Ettmayer, B. Schultrich, Influencing factors on the carbothermal reduction of titanium dioxide without and with simultaneous nitridation, Int. J. Refract. Met. Hard Mater. 12 (1994) 161-172.
  25. S. Tan, M. Hojeij, B. Su, G. Meriguet, N. Eugster, H.H. Girault, 3D-ITIES supported on porous reticulated vitreous carbon, J. Electroanal. Chem. 604 (2007) 65-71. https://doi.org/10.1016/j.jelechem.2006.11.011
  26. Y.-J. Lee, Formation of silicon carbide on carbon fibers by carbothermal reduction of silica, Diamond Relat. Mater. 13 (2004) 383-388. https://doi.org/10.1016/j.diamond.2003.11.062
  27. S. Tingry, C. Innocent, S. Touil, A. Deratani, P. Seta, Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using $\beta$-cyclodextrin-containing PVA membrane, Mater. Sci. Eng. C 26 (2006) 222-226. https://doi.org/10.1016/j.msec.2005.10.071
  28. S. Gomes, L. David, J.-P. Roger, G. Carlot, D. Fournier, C. Valot, M. Raynaud, Thermal conductivity degradation induced by heavy ion irradiation at room temperature in ceramic materials, Eur. Phys. J. Spec. Top 153 (2008) 87-90. https://doi.org/10.1140/epjst/e2008-00399-2
  29. M. Gendre, A. Maitre, G. Trolliard, Synthesis of zirconium oxycarbide ($ZrC_{x}O_{y}$) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 2377-2385. https://doi.org/10.1016/j.jeurceramsoc.2011.05.037
  30. A.N. Upadhyay, R.S. Tiwari, N. Mehta, Kedar Singh, Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive $Se_{85}Te_{10}Ag_{5}$ glassy composites, Mater. Lett. 136 (2014) 445-448. https://doi.org/10.1016/j.matlet.2014.08.092
  31. M. Mazaheri, D. Mari, Z. Hesabi, R. Schaller, G. Fantozzi, Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol. 71 (2011) 939-945. https://doi.org/10.1016/j.compscitech.2011.01.017
  32. Jung-Hoo Shin, Seong-Hyeon Hong, Fabrication and properties of reduced graphene oxide reinforced yttriastabilized zirconia composite ceramics, J. Eur. Ceram. Soc. 349 (2014) 1297-1302.
  33. W.D. Kingery, Introduction to Ceramics, second ed., Wiley, New York, 1976, p. 636.
  34. B. Zhao, D. Katoshevski, E. Bar-Ziv, Temperature determination of single micrometer-sized particles from forced/free convection and photophoresis, Meas. Sci. Technol. 10 (1999) 1222-1232. https://doi.org/10.1088/0957-0233/10/12/314

Cited by

  1. Phonon Thermal Conductivity of the Cubic and Monoclinic Phases of Zirconia by Molecular Dynamics Simulation vol.843, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.843.110
  2. Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres vol.53, pp.1, 2015, https://doi.org/10.1016/j.net.2020.06.032
  3. Photocatalytic Decolorization of Methyl Red on Nanoporous Anodic ZrO2 of Different Crystal Structures vol.11, pp.2, 2015, https://doi.org/10.3390/cryst11020215
  4. Tailoring Thermal Transport Properties by Inducing Surface Oxidation Reactions in Bulk Metal Composites vol.13, pp.15, 2015, https://doi.org/10.1021/acsami.1c02792