Browse > Article
http://dx.doi.org/10.1016/j.net.2015.05.003

FABRICATION OF ZrO2-BASED NANOCOMPOSITES FOR TRANSURANIC ELEMENT-BURNING INERT MATRIX FUEL  

MISTARIHI, QUSAI (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
UMER, MALIK A. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
KIM, JOON HUI (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
HONG, SOON HYUNG (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
RYU, HO JIN (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.47, no.5, 2015 , pp. 617-623 More about this Journal
Abstract
$ZrO_2$-based composites reinforced with 6.5 vol.% of carbon foam, carbon fiber, and graphite were fabricated using spark plasma sintering, and characterized using scanning electron microscopy and X-ray diffractometry. Their thermal properties were also investigated. The microstructures of the reinforced composites showed that carbon fiber fully reacted with $ZrO_2$, whereas carbon foam and graphite did not. The carbothermal reaction of carbon fiber had a negative effect on the thermal properties of the reinforced $ZrO_2$ composites because of the formation of zirconium oxycarbide. Meanwhile, the addition of carbon foam had a positive effect, increasing the thermal conductivity from 2.86 to $3.38Wm^{-1}K^{-1}$ at $1,100^{\circ}C$. These findings suggest that the homogenous distribution and chemical stability of reinforcement material affect the thermal properties of $ZrO_2$-based composites.
Keywords
Carbon fiber; Carbon foam; Graphite; Spark plasma sintering; Thermal conductivity; $ZrO_2$-Based composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.D. Doganci, B.U. Sesli, H.Y. Erbil, B.P. Binks, I.E. Salama, Liquid marbles stabilized by graphite particles from aqueous surfactant solutions, Colloids Surf. A Physicochem. Eng. Asp. 384 (2011) 417-428.   DOI
2 D.R. Gaskell, Introduction to the Thermodynamics of Materials, fifth ed., Taylor & Francis, New York, 2008, pp. 133-135.
3 I. Brian, O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973, pp. 116, 162, 916, 918.
4 M.D. Sacks, C.-A. Wang, Z. Yang, A. Jain, Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors, J. Mater. Sci. 39 (2004) 6057-6066.   DOI
5 L.-M. Berger, P. Ettmayer, B. Schultrich, Influencing factors on the carbothermal reduction of titanium dioxide without and with simultaneous nitridation, Int. J. Refract. Met. Hard Mater. 12 (1994) 161-172.
6 S. Tan, M. Hojeij, B. Su, G. Meriguet, N. Eugster, H.H. Girault, 3D-ITIES supported on porous reticulated vitreous carbon, J. Electroanal. Chem. 604 (2007) 65-71.   DOI
7 Y.-J. Lee, Formation of silicon carbide on carbon fibers by carbothermal reduction of silica, Diamond Relat. Mater. 13 (2004) 383-388.   DOI
8 S. Tingry, C. Innocent, S. Touil, A. Deratani, P. Seta, Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using $\beta$-cyclodextrin-containing PVA membrane, Mater. Sci. Eng. C 26 (2006) 222-226.   DOI
9 S. Gomes, L. David, J.-P. Roger, G. Carlot, D. Fournier, C. Valot, M. Raynaud, Thermal conductivity degradation induced by heavy ion irradiation at room temperature in ceramic materials, Eur. Phys. J. Spec. Top 153 (2008) 87-90.   DOI
10 A.N. Upadhyay, R.S. Tiwari, N. Mehta, Kedar Singh, Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive $Se_{85}Te_{10}Ag_{5}$ glassy composites, Mater. Lett. 136 (2014) 445-448.   DOI
11 M. Mazaheri, D. Mari, Z. Hesabi, R. Schaller, G. Fantozzi, Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol. 71 (2011) 939-945.   DOI
12 Jung-Hoo Shin, Seong-Hyeon Hong, Fabrication and properties of reduced graphene oxide reinforced yttriastabilized zirconia composite ceramics, J. Eur. Ceram. Soc. 349 (2014) 1297-1302.
13 W.D. Kingery, Introduction to Ceramics, second ed., Wiley, New York, 1976, p. 636.
14 B. Zhao, D. Katoshevski, E. Bar-Ziv, Temperature determination of single micrometer-sized particles from forced/free convection and photophoresis, Meas. Sci. Technol. 10 (1999) 1222-1232.   DOI
15 C. Lombardi, L. Luzzi, E. Padovani, F. Vettraino, Thoria and inert matrix fuels for a sustainable nuclear power, Prog. Nucl. Energy 50 (2008) 944-953.   DOI
16 K. Hesketh, B. Lance, O. Koberl, D. Porsch, T. Wolf, G. Schlosser, H. Mineo, T. Okubo, O. Sato, S. Uchikawa, Y. Sagayama, T. Yamamoto, R. Chawla, E. Sartori, Plutonium Management in the Medium Term, NEA4451, OECD NEA, 2003.
17 T. Yu, X. Wu, J.S. Xie, M. Qin, Z.F. Li, Z.J. Liu, H.W. Chen, A study on the burn-up characteristics of inert matrix fuels, Prog. Nucl. Energy 78 (2015) 341-345.   DOI
18 C. Degueldre, J.M. Paratte, Concepts for an inert matrix fuel, an overview, J. Nucl. Mater. 274 (1999) 1-6.   DOI
19 C. Degueldre, W. Wiesenack, Zirconia inert matrix fuel for plutonium and minor actinides management in reactors and as an ultimate waste form, Mater. Res. Soc. Symp. Proc. 1104 (2008) 52-62.
20 Ch. Hellwig, M. Streit, P. Blair, T. Tverberg, F.C. Klaassen, R.P.C. Schram, F. Vettraino, T. Yamashita, Inert matrix fuel behaviour in test irradiations, J. Nucl. Mater. 352 (2006) 291-299.   DOI
21 K. Lipkina, A. Savchenko, M. Skupov, A. Glushenkov, A. Vatulin, O. Uferov, Y. Ivanov, G. Kulakov, S. Ershov, S. Maranchak, A. Kozlov, E. Maynikov, K. Konova, Metallic inert matrix fuel concept for minor actinides incineration to achieve ultra-high burn-up, J. Nucl. Mater. 452 (2014) 378-381.   DOI
22 A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (2011) 569-582.   DOI
23 C. Degueldre, T. Arima, Y.W. Lee, Thermal conductivity of zirconia based inert matrix fuel: use and abuse of the formal models for testing new experimental data, J. Nucl. Mater. 319 (2003) 6-14.   DOI
24 N. Nitani, T. Yamashita, T. Matsuda, S.-I. Kobayashi, T. Ohmichi, Thermophysical properties of rock-like oxide fuel with spineleyttria stabilized zirconia system, J. Nucl. Mater. 274 (1999) 15-22.   DOI
25 K. Idemitsu, T. Arima, Y. Inagaki, S. Torikai, M.A. Pouchon, Manufacturing of zirconia microspheres doped with erbia, yttria and ceria by internal gelation process as a part of a cermet fuel, J. Nucl. Mater. 319 (2003) 31-36.   DOI
26 J. Klett, R. Hardy, E. Romine, C. Walls, T. Burchell, Highthermal- conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon 38 (2000) 953-973.   DOI
27 G.H. Zhou, S.W. Wang, J.K. Guo, Z. Zhang, The preparation and mechanical properties of the unidirectional carbon fiber reinforced zirconia composite, J. Eur. Ceram. Soc. 28 (2008) 787-792.   DOI
28 J. Ai, G. Zhou, H. Zhang, P. Liu, Z. Wang, S. Wang, Mechanical properties and microstructure of two dimensional carbon fiber reinforced zirconia composites prepared by hotpressing, Ceram. Int. 40 (2014) 835-840.   DOI
29 S. Guo, Thermal and electrical properties of hot pressed short pitch-based carbon fiber-reinforced $ZrB_{2}-SiC$ matrix composites, Ceram. Int. 39 (2013) 5733-5740.   DOI
30 P. He, D. Jia, T. Lin, M. Wang, Y. Zhou, Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int. 36 (2010) 1447-1453.   DOI
31 M. Gendre, A. Maitre, G. Trolliard, Synthesis of zirconium oxycarbide ($ZrC_{x}O_{y}$) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 2377-2385.   DOI
32 P.G. Medvedev, M.J. Lambregts, M.K. Meyer, Thermal conductivity and acid dissolution behavior of $MgO-ZrO_{2}$ ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 349 (2006) 167-177.   DOI
33 K. McCoy, C. May, Enhanced thermal conductivity oxide nuclear fuels by co-sintering with BeO: II. Fuel performance and neutronics, J. Nucl. Mater. 375 (2008) 157-167.   DOI
34 S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H.-C. Kuan, P. Majewski, J. Ma, L. Zhang, Melt compounding with graphene to develop functional, high-performance elastomers, Nanothechnology 24 (2013) 165601-165615.   DOI