Browse > Article

Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites  

Shin, Yong-Deok (원광대학 전기전자 및 정보공학부)
Ju, Jin-Young (원광대학 전기전자 및 정보공학부)
Publication Information
The Transactions of the Korean Institute of Electrical Engineers C / v.55, no.9, 2006 , pp. 434-441 More about this Journal
Abstract
The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.
Keywords
Annealing Temperature; Electroconductive Ceramic Composites; Pressureless-Sintered; Pauw Method; PTCR In Situ $YAG(Al_5Y_3O_{12})$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Rixecker, I. Wiedmann, A. Rosinue and F. Aldinger, 'High-Temperature effects in the Fracture Mechanical Behaviour of Silicon Carbide Liquid-Phase-Sintered with AlN-$Y_2O_3$ Additives', Journal of the European Ceramic Society, 21. pp. 1013-1019, 2001   DOI   ScienceOn
2 Y. D. Shin, J. Y. Ju, J. S. Kwon, 'Electrical Conductive Mechanism of Hot-pressed $alpha-SiC-ZrB_2$ Composites', Trans. KIEE, Vol. 48C[2], pp. 104-108, 1998   과학기술학회마을
3 Y. D. Shin and J. Y. Ju 'Properties and Manufacture of the $beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering', Trans. KIEE. Vol. 48C[2], pp. 92-97, 1999
4 Akira Kondo, 'Electrical Conduction Mechanism in Recrystallized SiC', Journal of the Ceramic Society of Japan. Int. Edition, Vol. 100, pp. 1204-1208, 1993
5 Rong Huang, Hui Gu, Jingxian Zhang and Dongliang Jiang, 'Effect of $Y_2O_3-Al_2O_3$ Ratio on Inter-Granualar Phases and Films in Tape-Casting $alpha-SiC$ with High Toughness', Acta Materialia., 53[8], pp. 2521-2529, 2005   DOI   ScienceOn
6 Jow-Lay Huang and Jyh-Ming Jih, 'Investigation of SiC-AIN: Part Ⅱ, Mechanical Properties', J. Am. Ceram. Soc., 79[5], pp. 1262-1264, 1996   DOI   ScienceOn
7 V. A. Izhevskyi, L. A. Genova, A. H. A. Bressiani and J. C. Bressiani, 'Microstructure and Properties Tailoring of Liquid-Phase Sintered SiC', International Journal of Refractory Metals & Hard Materials, 19. pp. 409-417, 2001   DOI   ScienceOn
8 Guo- Jun Zhang, Zhen-Yan Deng, Naoki Kondo, Jian-Feng Yang and Tatsuki Ohji, 'Reactive Hot Pressing of $ZrB_2$-SiC Composites', J. Am. Ceram. Soc., 83[9], pp. 2330-2332, 2000   DOI   ScienceOn
9 Neil N. Ault and John T. Crowe, 'Silicon Carbide', J. Am. Ceram. Soc., Bull., 74[6], pp. 150-151, 1995
10 C. Monticelli, F. Zucchi, A. Pagnoni and M. Dal Colle, 'Corrosion of a Zirconium/Silicon Carbide Composite in Aqueous Solutions', Electrochimica Acta, 50, pp. 3461-3469, 2005   DOI   ScienceOn
11 F. Monteverde, A. Bellosi and S. Guicciardi, 'Processing and Properties of Zirconium Diboride -based Composites', Journal of the European Ceramic Society, 22. pp. 279-288, 2002   DOI   ScienceOn
12 D. Sciti, S. Guicciardi and A. Bellosi, 'Effect of Annealing Treatments on Microstructure and Mechanical Properties of Liquid-Phase-Sintered Silicon Carbide', Journal of the European Ceramic Society, 21. pp. 621-632, 2001   DOI   ScienceOn
13 Hui Gu, Takayuki Nagano, Guo-Dong Zhan, Mamoru Mitomo and Fumihiro Wakai, 'Dyanamic Evolution of Grain Boundary Films m Liquid-Phase-Sintered Ultrafine Silicon Carbide Material', J. Am. Ceram. Soc., 86[10], pp. 1753-1760, 2003   DOI   ScienceOn
14 Da Chen, Xiao Feng Zhang and Robert O. Ritchie, 'Effects of Grain-Boundary Structure on the Strength, Toughness, and Cyclic-Fatigue Properties of a Monolithic Silicon Carbide', J. Am. Ceram. Soc., 83[8], pp. 2079-2081, 2000   DOI   ScienceOn
15 ,Irene M. Peterson and Tseng Ying Tien, 'Effect of the Grain Boundary Thermal Expansion Coefficient on the Fracture Toughness of Silicon Nitride', J. Am. Ceram. Soc., 78[9], pp. 2345-2352, 1995   DOI   ScienceOn
16 J. Ihle, M. Herrmann and J. Alder, 'Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part Ⅲ: Interaction between $Al_2O_3-Y_2O_3$ and SiC', Journal of the European Ceramic Society, 25, pp. 1005-1013, 2005   DOI   ScienceOn
17 Weimin Wang, Zhengyi Fu, Hao Wang and Runzhang Yuan, 'Influence of Hot Pressing Sintering Temperature and Time on Microstucture and mechanical Properties of $TiB_2$ Ceramics', Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002   DOI   ScienceOn
18 Y. W. Kim, W. J. Kim and D. H. Cho, 'Effect of Additive Amount on Microstructure and Mechanical Properties of Self-reinforced Silicon Carbide', J. Mater. Sci. Lett.., 16. pp.1384-1386, 1997   DOI   ScienceOn
19 Kim, J. Y., Kim, Y. W., Lee, J. G., and Cho, K. S., 'Effect of Annealing on Mechanical Properties of Self-reinforced alpha-Silicon Carbide', J. Mat. Sci., 34. pp. 2325-2330, 1999   DOI   ScienceOn
20 Lee, J. K., Tanaka, H. and Kim, H., 'Movement of Liquid Phase and the Formation of Surface Reaction Layer on the Sintering of $beta$-SiC with an Additive of Yttrium Aluminium Garnet', J. Mat. Sci., 15. pp. 409-411, 1996   DOI
21 Oyelayo O. ajayi, Ali Erdemir, Richard H. Lee and Fred A. Nichols, 'Sliding Wear of Silicon Carbide-Titanium Boride Ceramic-Matrix Composite', J. Am. Ceram. Soc., 76[2], pp. 511-517, 1993   DOI
22 J. B. Hurst and S. Dutta, 'Simple Processing Method for High-strength Silicon Carbide', J. Am. Ceram. Soc., 70[11]. pp. C303-C308, 1987   DOI   ScienceOn
23 Jaroslav L. Caslvsky and Dennis J. Viechnicki, 'Melting Behaviour and Metastability of Yttrium Aluminium Garnet(YAG) and $YAlO_3$ Determined by Optical Differential Thermal Analysis ', J. Mater Sci., 15, pp. 1709-1718, 1980   DOI
24 Carl H. Mcmurtry, Wolfgang D. G. Boecker. Srinivasa G. Seshadri, Joseph S. Zanghi and John E. Garnier 'Microstructure and Material Properties of SiC-$TiB_2$ Particulate Composites', J. Am. Ceram. Soc. Bull., 66[2], pp. 325-329, 1987
25 Y. D. Shin 'Electric Discharge Machining of Hot-Pressed $SiC-ZrB_2$ Composites Ceramic', Trans. KIEE. Vol. 46[7], pp. 1062-1067, 1997
26 Y. W. Kim, M. Mitomo, H. Emoto, J. G. Lee, 'Effect of Initial $alpha$-Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide', J. Am. Ceram. Soc., 81[12], pp. 3136-3140, 1998   DOI   ScienceOn
27 Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, James D. Kiser, Mrityunjay Singh and Jonathan A. Salem, 'Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use', Journal of the European Ceramic Society, 22. pp. 2757-2767, 2002   DOI   ScienceOn
28 Y. W. Kim, M. Mitomo and H. Hirotsuru, 'Microstructure Development of Silicon Carbide Containing Large Seed Grains', J. Am. Ceram. Soc., 80[1], pp. 99-105, 1997   DOI   ScienceOn
29 Jingxian Zhang, Rong Huang, Hui Gu, Dongliang Jiang, Qingling Lin and Zhengren Huang, 'High Toughness in Laminated SiC Ceramics from Aqueous tape Casting', Scripta Materialia., 52[5], pp. 381-385, 2005   DOI   ScienceOn
30 Mark M. Opeka, Inna G. Talmy, Eric J. Wuchina, James A. Zaykoski and Samuel J. Causey, 'Mechanical Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds', Journal of the European Ceramic Society, 19. pp. 2405-2414, 1999   DOI   ScienceOn
31 Y. D. Shin, J. Y. Ju and Ch. Hwang, 'The Properties of $beta-SiC-ZrB_2$ Electroconductive Ceramic Composites with $Al_2O_3+Y_2O_3$ Contents', Trans. KIEE Vol. 49C[9], pp. 516-521, 2000
32 A. G. Evans and T. R. Wilshaw, 'Quasi-Static Solid Particle Damage in Brittle Solids-1. Observation Analysis and Implications', Acta Metallurgica. Vol. 24, pp. 939-956, 1976   DOI   ScienceOn
33 W. C. Tripp, H. H. Davis and H. C. Graham, 'Effect of an SiC Addition on the Oxidation of $ZrB_2$' J. Am. Ceram. Soc. Bull., 52[8], pp. 612-616, 1973
34 Kristoffer Krnel, Diletta Sciti, Elena Landi and Alida Bellosi, 'Surface Modification and Oxidation Kinetics of Hot-Pressed AlN-SiC-$MoSi_2$ Electroconductive Ceramic Composite', Applied Surface Science, 210. pp. 274-285, 2003   DOI
35 F. Monteverde and A. Bellosi, 'Oxidation of $ZrB_2$-Based Ceramics in Dry Air', Journal of The Electrochemical Society, 150(11). pp. B552-B559, 2003   DOI   ScienceOn
36 Ken Takahashi and Ryutarao Jimbou., 'Effect of Uniformity on the Electrical Resistivity of SiC-$ZrB_2$ Ceramic Composites', J. Am. Ceram. Soc., 70[12], pp. C369-C373, 1987   DOI   ScienceOn
37 Adam L. Chamberlain, William G. Fahrenholtz and Gregory E. Hilmas, 'High-Strength Zirconium Diboride-Based Ceramics', J. Am. Ceram. Soc.,, 87[6], pp. 1170-1172, 2004   DOI   ScienceOn
38 M. Nader, F. Aldinger and M. J. Hoffmann, 'Influence of the $alpha/beta$ Phase Transformation on Microstructural Development and Mechanical Properties of Liquid Phase Sintered Silicon Carbide', J. Mat. Sci., 34. pp. 1197-1204, 1999   DOI   ScienceOn
39 J. Y. Kim, Y. W. Kim, Mitomo, M., Zhan, G. D. and Lee, J. G., 'Microstructure and Mechanical Properties of ${\alpha}$-Silicon Carbide Sintered with Yttrium-Aluminum Garnet and Silica', J. Am. Ceram. Soc.,, 82[2], pp. 441-444, 1999   DOI
40 D. Sciti and A. Bellosi, 'Effects of Additives on Densification, Microstructure and Properties of Liquid-Phase Sintered Silicon Carbide', J. Mat. Sci. Lett., 35, pp, 3849-3855, 2000   DOI   ScienceOn
41 Guo-Dong Zhan, Rong- Jun Xie and Mamoru Mitomo, 'Effect of ${\beta}-to-{\alpha}$ Phase Transformation on the Microstructural Development and Mechanical Properties of Fine-Grained Silicon Carbide Ceramics', J. Am., Ceram. Soc., 84[5]. pp. 945-950, 2001   DOI   ScienceOn
42 J. H. She and K. Ueno., 'Densification Behavior and Mechanical Properties of Pressureless-Sintered Silicon Carbide Ceramics with Alumina and Yttria Additions', Materials Chemistry and Physics., 59, pp. 139-142, 1999   DOI   ScienceOn
43 Y. D. Shin, J. Y. Ju and Ch. Hwang, 'Properties and Manufacture of ${\beta}-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(Ⅱ)', Trans. KlEE, Vol. 49C[2], pp. 92-97, 2000   과학기술학회마을
44 L. K. L. Falk, 'Microstructural Development during Liquid Phase Sintering of Silicon Carbide Ceramics', Journal of the European Ceramic Society, 17. pp. 983-994, 1997   DOI   ScienceOn
45 Mylene Brach, Diletta Sciti, Andrea Balbo and Alida Bellosi, 'Short-Term Oxidation of a Ternary Composite in the System $AlN-SiC-ZrB_2$', Journal of the European Ceramic Society, 25. pp. 1771-1780, 2005   DOI   ScienceOn
46 Cathleen Mroz, 'Zirconium Diboride', J. Am. Ceram. Soc., Bull., 74[6], pp. 164-165, 1995
47 Frederic Monteverde and Alida Bellosi, 'Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed $ZrB_2$', Advanced Engineering Materials, 5[7], pp. 508-512, 2003   DOI   ScienceOn
48 Diletta. Sciti, Cesare. Melandri and Alida Bellosi, 'Properties of $ZrB_2$-Reinforced Tenary Composites', Adanced Engineering Materials, 6[9], pp. 775-781, 2004   DOI   ScienceOn
49 Joe J. Cao, Warren J. Moberlychan, Lutgard C. Dejonghe, Christopher J. Gilbert and Robert O. Ritchie, 'In Situ Toughened Silicon Carbide Al-B-C Additions', J. Am. Ceram. Soc., 79[2], pp. 461-469, 1996   DOI
50 Warren. J. Moberlychan and Lutgard. C. De Jonghe, 'Controlling Interface Chemistry and Structure to Process and Toughen Silicon Carbide', Acta Materialia., 46[7], pp. 2471-2477, 1998   DOI   ScienceOn
51 Motzfeld, K., 'Silicon Carbide : Synthesis, Structure and Properties', In Proceedings of International Conference on Engineering Ceramics '92, ed InM. Haviar. Reproprint, Bratislava, pp. 7-42, 1993
52 Nitin P. Padture and Brian R. Lawn, 'Toughness Properties of a silicon Carbide with an in Situ Induced Heterogeneous Grain Structure', J. Am. Ceram. Soc., 77[10], pp. 2518-2522, 1994   DOI   ScienceOn
53 J. Forster, R. $Va{beta}en$, D. Stover, 'Improvement of Fracture Toughness in Hot Isostatically Pressed Mixtures of Ultrafine and Coarse-Grained SiC Ceramics', J. Mat. Sci. Lett., 14, pp. 214-216, 1995   DOI
54 S. G. Lee and Y. W. Kim, 'Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics', J. Am. Ceram. Soc., 84[6], pp. 1347-1353, 2001   DOI   ScienceOn