• Title/Summary/Keyword: $YBa_2Cu_3O_{7-x}$ (YBCO) films

Search Result 65, Processing Time 0.023 seconds

Fabrication of the in-plane Aligned a-Axis Oriented $YBa_2Cu_3O_{7-x}$ Thin Films (평면배향된 a-축 수직 $YBa_2Cu_3O_{7-x}$ 고온초전도 박막의 제작)

  • 성건용;서정대
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.313-320
    • /
    • 1996
  • We have fabricated an in-plane aligned a-axis oriented YBa2Cu3O7-x (a-YBCO) thin film on a LaSrGaO4(100) substrate with a PrBa2Cu3O7-x(PBCO) template layer by two step plused laser deposition using 308 nm XeCl excimer laser. A YBCO layer and PBCO layer grown at low temperatures were used as template layers. We have investigated the effect of the deposition temperature of template layers on the superconducting and struc-tural properties of in-plane aligned a-YBCO thin films. An optimal deposition temperature of the PBCO template layers was 630. In-plane aligned a-YBCO thin films showed an anisotropy ratio in resistivity of 11.5 and a zero resistance temperature of 88 K.

  • PDF

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

Growth of Large Area $YBa_{2}$$Cu_{3}$ $O_{7-x}$Thin Films by Hollow Cathode Discharge Sputtering System (할로우 캐소드 방전 스퍼터링 시스템을 이용한 대면적 $YBa_{2}$$Cu_{3}$ $O_{7-x}$박막 성장)

  • 서정대;강광용;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.26-29
    • /
    • 1999
  • Superconducting $YBa_{2}$$Cu_{3}$ $O_{7-x}$(YBCO) thin films were deposited on MgO(100) substrates using a hollow cathode discharge sputtering system. Influence of the sputtering conditions such as substrate temperature and discharge sputtering gas pressure on electrical and structural properties were investigated. It was found that YBCO thin films with zero resistance temperature higher than 85 K were obtained to the pressure 200 mToorr(Ar/O2=0.9), substrate temperature of $760^{\circ}C$, and target-substrate distance of 10 mm during film deposition. Homogeneous large area YBCO films with 2 inch diameter were also sucessfully fabricated by this method.

  • PDF

Effect of $Y_2O_3$ Nanoparticles on Critical Current Density of $YBa_2Cu_3O_{7-x}$ Thin Films ($Y_2O_3$ 나노입자가 $YBa_2Cu_3O_{7-x}$ 박막의 임계전류밀도에 미치는 영향)

  • Tran, H.D.;Reddy, D.Sreekantha;Wie, C.H.;Kang, B.;Oh, Sang-Jun;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Introduction of proper impurity into $YBa_2Cu_3O_{7-x}$ (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of $Y_2O_3$ nanoparticles on the critical current density $J_c$ of the YBCO thin films. The $Y_2O_3$ nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/$Y_2O_3$/LAO or $Y_2O_3$/YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied ($780^{\circ}C$ and $800^{\circ}C$) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of $780^{\circ}C$ created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. $J_c$ values of the YBCO films with $Y_2O_3$ particles were either remained nearly the same or decreased for the samples in which YBCO is grown at $780^{\circ}C$. On the other hand, $J_c$ values were enhanced for the samples in which YBCO is grown at higher temperature of $800^{\circ}C$. The difference in the effect of $Y_2O_3$ can be explained by the fact that the higher deposition temperature of $800^{\circ}C$ reduces intrinsic pinning centers and $J_c$ is enhanced by introduction of artificial pinning centers in the form of $Y_2O_3$ nanoparticles.

  • PDF

Substrate effects on the characteristics of $YBa_2Cu_3O_{7-x}$ thin films prepared by RF magnetron sputtering (RF마그네트론 스퍼터링법으로 제조한 $YBa_2Cu_3O_{7-x}$전도체 박막의 특성에 대한 기판의 영향)

  • 신현용;박창엽
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 1995
  • High Tc superconducting YBa$_{2}$Cu$_{3}$$O_{7-x}$ thin films were prepared on various substrates by off-axis rf magnetron sputtering method to examine the substrate effects on the film structure and its R-T characteristics. The SEM analysis showed that the surface morphology of the grown YBa$_{2}$Cu$_{3}$O.sub 7-x/, film has different characteristic structure with different substrate used. The film on (100) SrTiO$_{3}$ substrate has critical current density of 3*10$^{5}$ A/cm$^{2}$ at 77K under zero magnetic field. The X-ray diffraction measurements revealed that the films on (100) SrTiO$_{3}$ substrate have mixed a-axis and c-axis normal to the substrate surface and the films on (100) MgO and ZrO$_{2}$/sapphire substrates have c-axis normal orientation to the substrate surface. However, YBa$_{2}$Cu$_{3}$$O_{7-x}$ films on (100) sapphire substrates showed no preferential orientation.ion.

  • PDF

The Formation of $YBa_2Cu_3O_{7-x}$(Y123) and CuO Phases in Cu-sheath YBCO Thick Films (동피복 YBCO 후막에서 $YBa_2Cu_3O_{7-x}$(Y123) 및 CuO상의 형성 기구)

  • Kim K.J.;Han S. C.;Han Y. H.;Jeong N. H.;Yun H. J.;Oh J. M.;Choi H. R.;Sung T. H.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.129-132
    • /
    • 2005
  • The formation behavior of $YBa_2Cu_3O_{7-x}$(Y123) and CuO phases in the heat-treated Cu-sheathed YBCO thick films was studied. The thick films were prepared by screen-printing method using $BaCO_3$ and Y211 powders on Cu tapes. The screen-printed thick films were placed at the center of the tube furnace, heated to $930^{\circ}C$ in air atmosphere and then maintained at the temperature for 60 sec - 300 sec. The microstructure and phases formed in the thick films were investigated by using optical microscope, X-ray diffraction (XRD) and SEM image analysis. During the heat treatment, partial melting occurred rapidly in the printed layers by peritectic reaction between CuO and precursor powders, and then YBCO superconducting phases nucleated from the Cu tapes and grew in a form of thick films.

  • PDF

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

Fabrication and Electrical Properities of Semiconducting YBa2Cu3O7-x thin Film or Application of IR Sensors (적외선 센서로의 응용을 위한 반도성 YBa2Cu3O7-x 박막의 제작 및 전기적 특성)

  • Jeong, Jae-Woon;Jo, Seo-Hyeon;Lee, Sung-Gap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1296-1299
    • /
    • 2012
  • $YBa_2Cu_3O_{7-x}$ thin films were fabricated by the spin-coating method on $SiO_2$/Si substrate using an alkoxide-based sol-gel method. The structural and electrical properties were investigated for various 1st annealing temperature. Due to the formation of the polycrystalline single phase, synthesis temperature was observed at around $720^{\circ}C-800^{\circ}C$. $YBa_2Cu_3O_{7-x}$ thin films with the 1st annealing temperature of $450^{\circ}C{\sim}500^{\circ}C$ showed the single XRD patterns without the second phase, such as $YBa_2Cu_4O_8$. The thickness of films was approximately $0.23{\mu}m{\sim}0.27{\mu}m$. Aerage grain size, resistance and temperature coefficient of resistance (TCR) of $YBa_2Cu_3O_{7-x}$ thin films with the 1st annealing temperature of $500^{\circ}C$ were $0.27{\mu}m$, $59.7M{\Omega}$ and -3.7 %/K, respecvitely.

High-rate growth $YBa_2$$Cu_3$$O_{7-x}$ thick films and thickness dependence of critical current density (Y$Ba_2$$Cu_3$$O_{7-x}$ 후막의 고속 증착과 임계 전류 밀도의 두께 의존성)

  • Jo W.
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • High-.ate in-situ$ YBa_2$Cu$Cu_3$$O_{7-x}$ (YBCO) film growth was demonstrated by means of the electron beam co-evaporation. Even though our oxygen pressure is low, ∼$5 ${\times}$10^{-5}$ Torr, we can synthesize as-grown superconducting YBCO films at a deposition rate of around 10 nm/s. Relatively high temperatures of around 90$0^{\circ}C$ was necessary in this process so far, and it suggests that this temperature at a given oxygen activity allows a Ba-Cu-O liquid formation along with an YBCO epitaxy. Local critical current density shows a clear correlation with local resistivity. Homogeneous transport properties with a large critical current density ($4 ∼ 5 MA/\textrm{cm}^2$ at 77K, 0T) are observed in top faulted region while it is found that the bottom part carries little supercurrent with a large local resistivity. Therefore, it is possible that thickness dependence of critical current density is closely related with a topological variation of good superconducting paths and/or grains in the film bodies. The information derived from it may be useful in the characterization and optimization of superconducting films for electrical power and other applications.

  • PDF

Characterization of Screen Printed $YBa_2Cu_3O_x$ Thick Films (스크린 프린팅법으로 제조된 $YBa_2Cu_3O_x$ 초전도 후막의 특성)

  • 김태윤;김승구;김대준;현상훈;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1007-1014
    • /
    • 1993
  • YBa2Cu3Ox(YBCO) thick films were prepared by a screen printing of the powders, obtained by a coprecipitation in oxalic acid, on the Y2O3-stabilized zirconia substrates and their superconducting properties were determined. TC, JC and the orientation factor of the thick films increased with increasing temperature up to 103$0^{\circ}C$ and then the superconducting properties disappeared with further heat treatments. The optimization of JC was achieved by heating thick films at 103$0^{\circ}C$ for 7min. In this case the TC of the thick film was determined to be 87.5K. It was observed that TC of thick films depends on the orthorhombicity and JC is likely governed by a microstructure of YBCO rather than by the orientation factor.

  • PDF