Effect of $Y_2O_3$ Nanoparticles on Critical Current Density of $YBa_2Cu_3O_{7-x}$ Thin Films

$Y_2O_3$ 나노입자가 $YBa_2Cu_3O_{7-x}$ 박막의 임계전류밀도에 미치는 영향

  • Tran, H.D. (Chungbuk National University) ;
  • Reddy, D.Sreekantha (Chungbuk National University) ;
  • Wie, C.H. (Chungbuk National University) ;
  • Kang, B. (Chungbuk National University) ;
  • Oh, Sang-Jun (National Fusion Research Institute) ;
  • Lee, Sung-Ik (Sogang University)
  • Published : 2009.10.30

Abstract

Introduction of proper impurity into $YBa_2Cu_3O_{7-x}$ (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of $Y_2O_3$ nanoparticles on the critical current density $J_c$ of the YBCO thin films. The $Y_2O_3$ nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/$Y_2O_3$/LAO or $Y_2O_3$/YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied ($780^{\circ}C$ and $800^{\circ}C$) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of $780^{\circ}C$ created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. $J_c$ values of the YBCO films with $Y_2O_3$ particles were either remained nearly the same or decreased for the samples in which YBCO is grown at $780^{\circ}C$. On the other hand, $J_c$ values were enhanced for the samples in which YBCO is grown at higher temperature of $800^{\circ}C$. The difference in the effect of $Y_2O_3$ can be explained by the fact that the higher deposition temperature of $800^{\circ}C$ reduces intrinsic pinning centers and $J_c$ is enhanced by introduction of artificial pinning centers in the form of $Y_2O_3$ nanoparticles.

Keywords

References

  1. T. P. Orlando, K. A. Delin, Foundations of applied superconductivity, Addison-Wesley (1990).
  2. J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, D. E. Peterson, Nature materials 3, 393 (2004).
  3. T. J. Haugan, P. N. Barnes, T. A. Campell, A. Goyal, A. Gapud, L. Heatherly, S. Kang, Physica C 425, 21-26 (2005). https://doi.org/10.1016/j.physc.2005.05.013
  4. P. Mele, K. Matsumoto, T. Horide, O. Miura, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Physica C 426-431, 1108-1112 (2005). https://doi.org/10.1016/j.physc.2005.03.043
  5. S. K. Viswanathan, A. A. Gapud, M. Varela, J. T. Abiade, D. K. Christen, S. J. Pennycook, D. Kumar, Thin solid film 515, 6452-6455 (2007). https://doi.org/10.1016/j.tsf.2006.11.120
  6. M. Sparing, E. Backen, T. Freudenberg, R. Huhne, B. Rellinghaus, L. Schultz, B. Holzapfel, Supercond. Sci. Technol. 20, S239-S246 (2007). https://doi.org/10.1088/0953-2048/20/9/S19
  7. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Physica C 463-465, 653-656 (2007) https://doi.org/10.1016/j.physc.2007.02.026
  8. T. Haugan, P. N. Barnes, I. Maartense, C. B. Cobb, J. Mater. Res. 18, 11 (2003).
  9. RJ. Gaboriaud, F. Pailloux, J. Perriere, Applied surface science 186, 477-482 (2002). https://doi.org/10.1016/S0169-4332(01)00749-8
  10. XCheng, Z. Qi, G. Zhang, H. Zhou, W. Zhang, M. Yin, Physica B 404, 146-149 (2009). https://doi.org/10.1016/j.physb.2008.10.022
  11. TA. Campbell, T. J. Haugan, I. Maartense, J. Murphy, L. Brunke, P. N. Barnes, Physica C 423, 1-8 (2005). https://doi.org/10.1016/j.physc.2004.09.018
  12. JAlbrecht, S. Leonhardt, H. U. Habermeier, S. Bruck, R. Spolenak, H. Kronmuller, Physica C 404, 18-21 (2004). https://doi.org/10.1016/j.physc.2003.11.059