• 제목/요약/키워드: $YAG(Al_5Y_3O_{12})$

검색결과 82건 처리시간 0.027초

무가압 소결법에 의한 SiC-$TiB_2$계 도전성 복합체의 특성 (Properties of Pressureless Sintered SiC-$TiB_2$ Electroconductive Composites)

  • 박미림;주진영;신용덕;소병문
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.118-122
    • /
    • 2001
  • The ${\beta}-SiC+TiB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density is over 78.83% of the theoretical density and increased with increasing sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 140 MPa for composites sintered at $1900^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest of 4.07 GPa at $1900^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 4.07 $MPa{\cdot}m^{1/2}$ for composites at $1900^{\circ}C$. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

무가압 Annealing한 $SiC-TiB_2$전도성 세라믹 복합체의 특성 (Properties of SiC-Ti $B_2$ Electroconductive Ceramic Composites by Pressureless Annealing)

  • 신용덕;주진영;최광수;오상수;윤양웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권2호
    • /
    • pp.80-84
    • /
    • 2003
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-Ti $B_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2$ $O_3$+ $Y_2$ $O_3$. The result of phase analysis for the SiC-Ti $B_2$ composites by XRD revealed $\alpha$-SiC(6H), Ti $B_2$, and YAG(A $l_{5}$ $Y_3$ $O_{12}$ ) crystal phase. The relative density of SiC-Ti $B_2$ composites was increased with increased $Al_2$ $O_3$+ $Y_2$ $O_3$ contents. The fracture toughness showed the highest value of 6.04 Mpa $m^{\frac{1}{2}}$ for composites added with l2wt% A1$_2$ $O_3$+ $Y_2$ $O_3$ additives at room temperature. The electrical resistivity showed the lowest value of 6.2$\times$10$^{-3}$ $\Omega$ㆍcm for composite added with l6wt% $Al_2$ $O_3$+ $Y_2$ $O_3$ additives at room temperature. The electrical resistivity of the SiC-Ti $B_2$ composites was all positive temperature cofficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성 (Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application)

  • 김용현;이상진
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

SiC계 복합체의 특성에 미치는 Boride의 영향 (Effects of Boride on Properties of SiC Composites)

  • 신용덕;주진영;전재덕;소병문;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.191-193
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC-39vol.% $TiB_2$ and using 61vol.% SiC-39vol.% $ZrB_2$ powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the SiC-$TiB_2$, and SiC-$ZrB_2$ composites. The ${\beta}\;{\alpha}$-SiC phase transformation was occurred on the $SiC-TiB_2$, $SiC-ZrB_2$ composites. The relative density, the flexural strength and Young's modulus showed respectively value of 98.57%, 226.06Mpa and $86.37{\times}10^3Mpa$ in SiC-$ZrB_2$ composites.

  • PDF

SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향 (Effect of Annealing on Properties of SiC-$TiB_2$ Composites)

  • 신용덕;주진영;고태헌;김영백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響) (Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Homogeneous precipitation method를 통한 나노 YAG : Ce 형광체 합성과 광학 특성 (Synthesis and luminescence characteristics of nano-sized YAG : Ce phosphors by homogeneous precipitation method)

  • 이철우;권석빈;지은경;송영현;정병우;김은영;정몽권;윤대호
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.18-21
    • /
    • 2017
  • 본 연구에서는 homogeneous precipitation method를 통하여 구형의 단분산(monodispersed) YAG : $Ce^{3+}$를 합성했다. 단분산 YAG : $Ce^{3+}$의 전구체를 합성하는 과정에서 aluminum ion들이 먼저 석출되어 aluminum 화합물을 형성하고 후에 yttrium 화합물들이 aluminum 화합물들의 표면에서 석출된다. 합성된 전구체를 파우더형태로 얻기 위해 건조과정을 거치는데, oven에서 건조했을 때 보다 동결건조기에서 건조했을 때 비교적 구형의 단분산 YAG : $Ce^{3+}$ 입자를 얻을 수 있었다. 하소 과정에서 공정을 진행하는 온도로서 $1100^{\circ}C$$1200^{\circ}C$를 비교해 보았다. 실험 결과 $1200^{\circ}C$의 온도로 상압에서 6시간 동안의 하소 과정을 진행하였을 때 400~500 nm 입자크기를 가진 단분산된 구형의 나노 YAG : $Ce^{3+}$ 입자가 합성되었다.

Czochralski 법으로 성장된 Yb3+ doped Y3Al5O12 단결정의 성장 분위기 및 도핑 농도에 따른 광학적 특성 (Optical properties of Yb3+ doped Y3Al5O12 single crystals derived by the Czochralski method according to growth atmosphere and doping concentration)

  • 심장보;이영진;강진기;이영국
    • 한국결정성장학회지
    • /
    • 제25권2호
    • /
    • pp.68-73
    • /
    • 2015
  • $Yb^{3+}$ 이온이 25 at.%까지 치환된 $Y_3Al_5O_{12}$ 단결정을 Czochralski 법으로 성장시켰다. 0.8 mm/h의 인상속도와 10 rpm의 회전 속도로 40 mm의 결정 직경과 160 mm의 결정 길이를 가진 단결정을 얻었다. 결정 성장 분위기는 순수한 질 소 혹은 질소와 산소를 혼합한 가스 분위기였다. 순수한 질소 분위기에서는 청록색을 띤 결정이 성장되었고 99 %의 질소와 1 %의 산소를 혼합한 가스 분위기에서 성장한 결정은 무색이었다. 농도 분석결과를 보면, 결정의 길이가 길어짐에 따라 $Yb^{3+}$의 농도는 감소하고, core 영역의 $Yb^{3+}$ 농도는 core 없는 영역보다 다소 높게 검출되었다. $Yb^{3+}$ 이온의 도핑 농도가 증가함에 따라 형광 수명은 감소하였다.

Annealing 온도 변화에 따른 $\beta-SiC-TiB_2$ 도전성 세라믹 복합체의 특성 연구 (A study on the properties of the Electrocondutive Ceramic $SiC-TiB_2$ Composites according to Annealing Temperature.)

  • 신용덕;주진영;최광수;오상수;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.106-108
    • /
    • 2002
  • The composites were fabricated 61vol.% $\beta-SiC$ and 39vol.% $TiB_2$ powders with the liquid forming additives of l2wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1700^{\circ}C,\;1750^{\circ}C,\;1800^{\circ}C$ for 4 hours respectively. The result of Phase analysis of composites by XRD revealed $\alpha-SiC$(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the Young's modulus showed the highest value of 92.9701% and 92.884Gpa for composites by pressureless annealing temperature $1700^{\circ}C$ at room temperature.

  • PDF