• Title/Summary/Keyword: $WO_3$ films

Search Result 102, Processing Time 0.023 seconds

Characteristics of tungsten nitride films deposited by reactive sputtering method (Reactive sputtering 방법으로 증착된 W nitride 박막의 특성)

  • 이연승;이원준;나사균;이윤직;임관용;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2002
  • We investigated the crystal structure, resistivity, and chemical states change of the tungsten nitride $(WN_x)$ films prepared by reactive sputtering method with various $N_2$ flow ratios. Crystal structures of $WN_x$ films deposited at the $N_2$ flow ratios of 20%, 40%, and 60% were bcc $\beta$-W, amorphous, and fcc $W_2$N, respectively. Surface roughness of $WN_x$ film was smallest when the $WN_x$ film is amorphous. After the air exposure of $WN_x$ films, $WO_3$ layer was formed at the surface of all samples. Both the nitrogen content of $WN_x$ film and the binding energy of W $4f_{7/2}$ peaks increased with increasing $N_2$ flow ratio. However, after $Ar^+$ ion etching, the shift of W $4f_{7/2}$ peaks was not observed with $N_2$ flow ratio due to the amorphization of the $WN_x$ film surface. The resistivity of $WN_x$ films increased with increasing $N_2$ flow ratio.

The gas sensing characteristic of the porous tungsten oxide thin films based on anodic reaction (양극반응으로 제조된 다공질 WO3 박막의 가스센서 특성)

  • Lee, Hong-Jin;Song, Kap-Duk;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, the gas responses of tungsten oxide films prepared by anodic reaction was discussed. Sensing electrodes and heating electrodes were patterned by photolithography method on quartz substrate. Porous tungsten oxide was fabricated in electrolyte solutions of 5 % HF (HF :$C_2H_6OH:H_2O$=3 : 2 : 20) by anodic reaction. The anodic reaction with metal (platinum wire) as a cathode and the sensing device as an anode was conducted under the various reaction times (1-10 min) at 10 mA/$cm^2$ The surface structure and morphology of the fabricated sensor have been analysed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). All the peaks of XRD results were well indexed to the pure phase pattern. The average diameter of the porous tungsten oxide surface were ranged about 100 nm. The fabricaed sensor showed good sensitivity to 200 ppm toluene at operating temperature of $250^{\circ}C$.

Photocatalyst Surface Properties of the Oxide Thin Films According to the Plasma Etching Process (플라즈마 에칭공정에 따른 산화물 박막의 광촉매 표면 특성)

  • Lee, Chang-Hyun;Seo, Sung-Bo;Oh, Ji-Yong;Jin, Ik-Hyeon;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.300-305
    • /
    • 2015
  • $WO_3$, $SiO_2$, and $TiO_2$ films with hydrophilic property are deposited by rf-magnetron sputtering. Their wettability is strongly depends on the presence or absence of the oxygen plasma etching on the glass substrates. The $TiO_2$ film of 50 nm-thick on the plasma etched glass shows a water contact angle (WCA) below $5^{\circ}$ which means a super-hydrophilic surface. However, WCA values are gradually degraded when the films are exposed under atmosphere, especially $WO_3$. In order to improve hydrophilic property, the degraded films can be again recovered by UV illumination for 10 sec using UV-light and the $TiO_2$ film shows a super-hydrophilic surface about $3^{\circ}$.

Fabrication and characteristics of NOx gas sensors using WO3 and In2O3 thick films to monitor air pollution

  • Son, M.W.;Choi, J.B.;Hwang, H.I.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.263-268
    • /
    • 2009
  • With the increasing number of automobiles, the problem of air pollution from the exhaust gases of automobiles has become a critical issue. The principal gases that cause air pollution are nitrogen oxide or NO$_x$(NO and NO$_2$), and CO. Because NO$_x$ gases cause acid rain and global warming and produce ozone(O$_3$) that leads to serious metropolitan smog from photochemical reaction, they must be detected and reduced. Mixtures of WO$_3$ and $In_2O_3$(WO$_3$:$In_2O_3$=10:0, 7:3, 5:5, 3:7, and 0:10 in wt.%), which are NO$_x$ gas-sensing materials, were prepared, and thick-film gas sensors that included a heater and a temperature sensor were fabricated. Their sensitivity to NO$_x$ was measured at 250$\sim$400$^{\circ}C$ for NO$_x$ concentrations of 1$\sim$5 ppm. The $In_2O_3$ thick-film sensor showed excellent sensitivity($R_{gas}/R_{air}$=10.22) at 300$^{\circ}C$ to 5-ppm NO. The response time for 70 % saturated sensitivity was about 3 seconds, and the sensors exhibited very fast reactivity to NO$_x$.

Electrochemical Characteristic on Lithium Intercalation into the Interface between Organic Electrolyte and Amorphous WO3 Thin Film Prepared by e-beam Evaporation Method (e-beam 증발법으로 제조된 비정질 WO3박막과 전해질 계면으로 삽입되는 리튬의 층간 반응에 관한 전기화학적 특성)

  • Min, Byoung-Chul;Sohn, Tae-Won;Ju, Jeh-Beck
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1022-1028
    • /
    • 1997
  • This work was performed to study the characteristics of electrochemical intercalation reactions occurring at the interface between the organic electrolyte and tungsten trioxide thin film (thickness of $4000{\AA}$) prepared by e-beam evaporation method as cathodically coloring oxide with regard to the electrochromism by the intercalating reactions of the lithium cation in the 1M $LiClO_4/PC$ organic solution. The characteristics of electrochemical intercalation reactions were investigated by various DC electrochemical methods such as cathodic Tafel polarization test, multiple and the single sweep cyclic voltammetry and the coulomety titrations method. The surfaces of thin films were observed with the patterns of X ray diffraction after the coloring and bleaching reactions. In comparison with the previous results that $WO_3$ thin film intersely detached from the surface of electrode when the hydrogen cation was intercalated into $WO_3$ thin film in the o.1N $H_2SO_4$ aqueous solution, the intercalation reaction of lithium cation into $WO_3$ thin film in the 1M $LiClO_4/PC$ organic solution was shown that the stable bleaching and coloration was appeared within 1.0V of the applied overpotential. When the overpotential of electrochromic reaction for lithium cation in the 1M $LiClO_4/PC$ organic solution had been applied up to 1.5V, the accumulation phenomenon of lithium in amorphous $WO_3$ thin film layer occurred because the inserted lithium into amorphous $WO_3$ thin layer for coloring process was not fully removed from the thin layer to the electrolyte during bleaching process. It was found that there is a limitation of applied overpotential for coloring process by the reduction of the current densities of bleaching and coloration after few number of coloring and bleaching cycles.

  • PDF

The Development of Electrochromic Materials for Energy Saving Smart Windows. (에너지 절약 스마트윈도우용 전기변색 재료의 개발)

  • Cho, Bong-Hee;Kim, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1308-1310
    • /
    • 1994
  • The electrochromism of $WO_3$ and $V_2O_5$ thin films have been studied. The $WO_3$ thin film is found to be cathodic coloration material and the coloration efficiency of this film is close to $60 [cm^2/C]$ in the near infrared region. The $V_2O_5$ thin film exhibits cathodic coloration in tile near infrared and anodic coloration in the blue and near UV region. The cathodic coloration in the $450{\sim}1100 nm$ wavelength range is relatively weak with a maximum coloration efficiency of $6 [cm^2/C]$).

  • PDF

High Photocatalytic Activity of Gd2O2S:Tb Modified Titanium Dioxide Films

  • Kim, Bum-Goo;Lee, Hak-Guen;Kim, Hee-Sung;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.675-678
    • /
    • 2009
  • $Fe_2O_3,\;Ag_2O,\;CaWO_4$ and $Gd_2O_2S$:Tb loaded on titanium dioxide photocatalysts (P25, Degussa) were prepared by a calcination. Their composite films containing water-born polyurethane used as a material for immobilization were obtained by spray coating technique. The photocatalytic activity of the titanium dioxide films was characterized by decrease of UV-vis absorption spectra for methylene blue and gas chromatography for photocatalytic decomposition of formaldehyde diluted in water. It was shown that the $Gd_2O_2S$:Tb modified titanium dioxide films had good photocatalytic properties and followed the first-order kinetic model with regard to photocatalytic decoloration of methylene blue. Especially in formaldehyde photodegradation experiment, decrease rate of concentration of the titanium dioxide films with $Gd_2O_2S$:Tb modifying was about 35% larger than that of the unloaded titanium dioxide film.

Gas sensing characteristics of Co3O4 thick films with metal oxides (금속산화물을 첨가한 Co3O4 후막의 가스 감지특성)

  • Jo, Chang-Yong;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2009
  • ${Co_3}{O_4}$ and ${Co_3}{O_4}$-based thick films with additives such as ${Co_3}{O_4}-{Fe_2}{O_3}$(5 wt.%), ${Co_3}{O_4}-{SnO_2}$ (5 wt.%), ${Co_3}{O_4}-{WO_3}$(5 wt.%) and ${Co_3}{O_4}$-ZnO(5 wt.%) were fabricated by screen printing method on alumina substrates. Their structural properties were examined by XRD and SEM. The sensitivities to iso-${C_4}H_{10}$, $CH_4$, CO, $NH_3$ and NO gases were investigated with the thick films heat treated at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. From the gas sensing properties of the films, the films showed p-type semiconductor behaviors. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed higher sensitivity to i-${C_4}H_{10}$ and CO gases than other thick-films. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed the sensitivity of 170 % to 3000 ppm iso-${C_4}H_{10}$ gas and 100 % to 100 ppm CO gas at the working temperature of $250^{\circ}C$. The response time to i-${C_4}H_{10}$ and CO gases showed rise time of about 10 seconds and fall time of about $3{\sim}4$ minutes. The selectivity to i-${C_4}H_{10}$ and CO gases was enhanced in the ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film.

Development of Lithium Conductive Polymer Electrolyte for Smart Windows (스마트 윈도우용 리들 전도성 전해질 개발)

  • 박태성;백희원;진교원;김영호;조봉희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.262-265
    • /
    • 1997
  • Various polymeric electrolytes were prepared from PEG, PEO and PMMA with LiClO$_4$ to develop lithium conductive electrolytes for smart windows. The complementary electrochromic devices were fabricated with these electrolytes involving cathodically coloring WO$_3$ and anodically coloring V$_2$O$\sub$5/ thin films. The performance of electrochromic device with PMMA/LiCLO$_4$ electrolyte was found to be excellent

  • PDF