• Title/Summary/Keyword: $UV/H_2O_2$ process

Search Result 195, Processing Time 0.026 seconds

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide (졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해)

  • Myung, Jung-Jae;Park, Jin-koo;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.777-783
    • /
    • 1997
  • $TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

  • PDF

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

Characteristics of Apparent Molecular Weight Distribution and Removal of DOC by Coagulation and Sedimentation Process with Polyaluminum Chloride in Nakdong River Water (응집·침전 공정에서 PAC를 이용한 낙동강 원수의 DOC 제거 및 분자량 분포 특성)

  • Kim, Yeong-Tak;Kim, Eun-Hee;Rhim, Jung-A;Yoon, Jeong-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of present work is to evaluate the optimum coagulation conditions in order to decrease dissolved organic carbon(DOC) and turbidity at different polyaluminum chloride dosage and pH from Nakdong River water. This studies were carried out to examine distribution on apparent molecular weight(AMW) of DOC in the Nakdong River water and its coagulation-sedimentation water. On the basis of jar tests, at the optimum coagulation pH in order to decrease DOC and turbidity were pH 5.0~6.0 and optimum dosage of polyaluminum chloride were 10~15mg $Al_2O_3/L$. The removal percentage of DOC and UV-254 absorbance were 35~40%, 45~60%, respectively. In pilot plant, at the optimum coagulation pH in order to decrease DOC and turbidity were 5.0-6.5, and the removal percentage of DOC were 30~45%. Distributions of AMW in the Nakdong River, less than 6,800dalton were 60.7% 6,800~11,000dalton were 32.8%, more than 11,000dalton were 6.4%. When the polyaluminum chloride dosage was 12~20mg/L, the removal percentages of each AMW for AMW of Nakdong River water, less than 6,800dalton were 25~28%, 6,800~11,000dalton were 65~68% more than 11,000dalton were 10~60%.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Property Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Kim, Seok Hwan;Lee, Jouhahn;Yun, Hyung Joong;Park, Soo Jeong;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.362-362
    • /
    • 2014
  • Atomic layer deposition (ALD) can be regarded as a special variation of the chemical vapor deposition method for reducing film thickness. ALD is based on sequential self-limiting reactions from the gas phase to produce thin films and over-layers in the nanometer scale with perfect conformality and process controllability. These characteristics make ALD an important film deposition technique for nanoelectronics. Tantalum pentoxide ($Ta_2O_5$) has a number of applications in optics and electronics due to its superior properties, such as thermal and chemical stability, high refractive index (>2.0), low absorption in near-UV to IR regions, and high-k. In particular, the dielectric constant of amorphous $Ta_2O_5$ is typically close to 25. Accordingly, $Ta_2O_5$ has been extensively studied in various electronics such as metal oxide semiconductor field-effect transistors (FET), organic FET, dynamic random access memories (RAM), resistance RAM, etc. In this experiment, the variations of chemical and interfacial state during the growth of $Ta_2O_5$ films on the Si substrate by ALD was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor $Ta(N^tBu)(dmamp)_2$ Me was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicide was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset value between $Ta_2O_5$ and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process (초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거)

  • Lee, Hongju;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.

Photo-Fenton Oxidation Treatment of Pilot Scale for the Decomposition of 1,4-dioxane Generated in a Polyester Manufacturing Process (폴리에스테르 중합 공정에서 발생되는 1,4-dioxane의 분해를 위한 파일럿 규모의 광펜톤산화처리)

  • So, Myung-Ho;Han, Ji-Sun;Han, Thi-Hiep;Seo, Jang-Won;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, South Korea was investigated regarding the release of high concentrations of 1,4-dioxane(about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2011). The pilot-scale (reactor volume, 10 $m^3$) treatment system using Photo-Fenton Oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2,800 ppm $H_2O_2$ and 1,400 ppm $FeSO_4$ were maintained along with 10 UV-C lamps (240 ${\mu}W/cm^2$) illuminated during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane. As a result, 1,4-dioxane in the effluent has been decreased as low as about 2~3 mg/L. Consequently, Photo-Fenton Oxidation coupled with activated sludge process can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard.

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan;Palanisamy, Kuppan;venugopal, Potu;Sandeep, Eesam;Kumar, Karrothu Varun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Predictive Model Selection of Disinfection by-products (DBPs) in D Water Treatment Plant (D 정수장 소독부산물 예측모델 선정)

  • Kim, Sung-Joon;Lee, Hyeong-Won;Hwang, Jeong-Seok;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.460-467
    • /
    • 2010
  • For D-WTP's sedimentation basin and distribution reservoir, and water tap the predictive models proposed tentatively herein included the models for estimating TTHM concentration in precipitated water, for treated water and for tap water, and the estimated correlation formula between treated water's TTHM concentration and tap water. As for TTHM-concentration predictive model in sedimentation water, the coefficient of determination is 0.866 for best-fitted short-term $DOC{\times}UV_{254}$ based Model (TTHM). As for $HAA_5$-concentration predictive model in sedimentation water, the coefficient of determination is 0.947 for the suitable $UV_{254}$-based model ($HAA_5$). In case of the predictive model in treated water, the coefficient of determination is 0.980 for best-fitted $DOC{\times}UV_{254}$ based model (TTHM) using coagulated waters, while the coefficient of determination is 0.983 for best-fitted $DOC{\times}UV_{254}$ based model ($HAA_5$) using coagulated waters, which described the $HAA_5$ concentration well. However, the predictive model for tap water could not be compatible with the one for treated water, only except for possibility inducing correlation formula for prediction, [i.e., the correlation formula between TTHM concentration and tap water was verified as TTHM (tap water) = $1.162{\times}TTHM$ (treated water), while $HAA_5$ (tap water) = $0.965{\times}HAA_5$ (treated water).] The correlation analysis between DOC and $KMnO_4$ consumption by process resulted in higher relationship with filtrated water, showing that its regression is $DOC=0.669{\times}KMnO_4$ consumption - 0.166 with 0.689 of determination coefficient. By substituting it to the existing DOC-based model ($HAA_5$) for treated water, the consequential model formula was made as follows; $HAA_5=8.35(KMnO_4\;consumption{\times}0.669-0.166)^{0.701}(Cl_2)^{0.577}t^{0.150}0.9216^{(pH-7.5)}1.022^{(Temp-20^{\circ}C)}$