Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.1.29

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth  

Das, Bidhu Bhusan (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
Palanisamy, Kuppan (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
venugopal, Potu (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
Sandeep, Eesam (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
Kumar, Karrothu Varun (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
Publication Information
Abstract
Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.
Keywords
Sol-gel growth; Powder X-ray diffraction; Hysteresis loop; Electron paramagnetic resonance (EPR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jing-Si, W.; Fa-Zheng, J.; Hui-Chao, M.; Xiao-Bo, L.; Ming-Yang, L.; Jing-Lan, K.; Gong-Jun, C.; Yu-Bin, D. Inorg. Chem. 2016, 55, 6685.   DOI
2 Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Langmuir 2001, 17, 6000.   DOI
3 Manna, A.; Imae, T.; Yogo, T.; Akai, K.; Okai, M. J. Colloid Interface Sci. 2002, 256, 297.   DOI
4 Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.   DOI
5 Yue, Z.; Li, L.; Zhou, J.; Zhang, H.; Gui, Z. Mater. Sci. Eng. 1999, B64, 68.
6 Vogel, A. I. Textbook of Quantitative Chemical Analysis; English Language Book Society: Longman, Essex, 1989; p. 368.
7 Maeland, A.; Flanagan, T. B. Can. J. Phys. 1964, 42, 2364.   DOI
8 Owen, E. A.; Yates, E. L. J. Chem. Phys. 1935, 3, 605.   DOI
9 Suh, I.K.; Ohta, H.; Waseda, Y. J. Mater. Sci. 1988, 23, 757.   DOI
10 Roisnel, T.; Rodriquez-Carvajal, J. Mater. Sci. Forum 2001, 378-381, 118.   DOI
11 Morgan, P. E. D.; Partin, D. E.; Chamberland, B. L.; O'Keeffe, M. J. Solid State Chem. 1996, 121, 33.   DOI
12 Patterson, A. L. Phys. Rev. 1939, 56, 978.   DOI
13 Das, B. B.; Aruna, S. Indian. J. Chem. 2003, 42A, 1590.
14 Das, B. B.; Deepa, J. Non-Cryst. Solids 2009, 355, 1663.   DOI
15 Das, B. B.; Srinivassan, A.; Yogapriya, M.; Kongara, M. R.; Punnoose, A. J. Non-Cryst. Solids 2015, 427, 146.   DOI
16 Sohn, K. S.; Cho, B.; Park, H. D. J. Am. Ceram. Soc. 1999, 82, 2779.
17 Ohishi, Y.; Mitachi, S.; Kanamori, T.; Manabe, T. Phys. Chem. Glasses 1983, 24, 135.
18 Balhausen, C. J. Introduction to Ligand Field Theory; McGraw-Hill Book Company Inc: New York; 1962, p. 269.
19 Belford, R. L.; Calvin, M.; Belford, G. J. Chem. Phys. 1957, 26, 1165.   DOI
20 Chandra, S.; Gupta, K. Transition Met. Chem. 2002, 27, 329.   DOI
21 Bersohn, M.; Baird, A.C. An Introduction to Electron Para Magnetic Resonance; W. A. Benjamin, Inc.: New York, 1966; p. 66.