Browse > Article
http://dx.doi.org/10.11001/jksww.2022.36.2.59

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications  

Choi, Sangki (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Lee, Woongbae (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Young Mo (Department of Civil and Environmental Engineering, Hanyang University)
Hong, Seok Won (Center for Water Cycle Research, Korea Institute of Science and Technology (KIST))
Son, Heejong (Water Quality Institute, Busan Water Authority)
Lee, Yunho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Journal of Korean Society of Water and Wastewater / v.36, no.2, 2022 , pp. 59-79 More about this Journal
Abstract
Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.
Keywords
Micropollutants; Sewage effluent; Ozone; Advanced oxidation process; Activated carbon;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018b). Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review, Water Res., 139, 118-131.   DOI
2 Ministry of Environment (MOE). (2019a). Statistics of sewerage.
3 Nam, S.W., Choi, D.J., Kim, S.K., Her, N. and Zoh, K.D. (2014). Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, J. Hazard. Mater., 270, 144-152.   DOI
4 Padhye, L., Wang, P., Karanfil, T. and Huang, C.H. (2010). Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines, Environ. Sci. Technol., 44(11), 4161-4168.   DOI
5 Pines, D.S. and Reckhow, D.A. (2002). Effect of dissolved cobalt(II) on the ozonation of oxalic acid, Environ. Sci. Technol. 36(19), 4046-4051.   DOI
6 Ministry of Environment (MOE). (2019b). Evaluation of the deterioration of public sewage treatment facilities and feasibility study for improvement, 38-39.
7 Altmann, J., Zietzschmann, F., Geiling, E.L., Ruhl, A.S., Sperlich, A. and Jekel, M. (2015). Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater, Chemosphere, 125, 198-204.   DOI
8 Benstoem, F., Nahrstedt, A., Boehler, M., Knopp, G., Montag, D., Siegrist, H. and Pinnekamp, J. (2017). Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies, Chemosphere, 185, 105-118.   DOI
9 Kosek, K., Luczkiewicz, A., Fudala-Ksiazek, S., Jankowska, K., Szopinska, M., Svahn, O., Tranckner, J., Kaiser, A., Langas, V. and Bjorklund, E. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries, Environ. Sci. Policy, 112, 213-226.   DOI
10 Environmental Protection Agency (EPA). (2006). National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule, Federal Register 40 CFR Parts 9, 141-142.
11 Bourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., Von Gunten, U., Siegrist, H. and McArdell, C.S. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res., 129, 486-498.   DOI
12 Altmann, J., Ruhl, A.S., Zietzschmann, F. and Jekel, M. (2014). Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res., 55, 185-193.   DOI
13 Audenaert, W.T.M., Vermeersch, Y., Van Hulle, S.W.H., Dejans, P., Dumoulin, A. and Nopens, I. (2011). Application of a mechanistic UV/hydrogen peroxide model at full-scale: Sensitivity analysis, calibration and performance evaluation, Chem. Eng. J., 171(1), 113-126.   DOI
14 Beltran, F.J. (2004). Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Boca Raton, Fla.
15 Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., De Alencastro, L.F., Abegglen, C., Thonney, D., Chevre, N., Scharer, M. and Barry, D.A. (2013). Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?, Sci. Total Environ., 461, 480-498.   DOI
16 Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R.A., Canonica, S., Snyder, S.A. and von Gunten, U. (2016). Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation, Environ. Sci. Technol., 50(7), 3809-3819.   DOI
17 Magdeburg, A., Stalter, D., Schlusener, M., Ternes, T. and Oehlmann, J. (2014). Evaluating the efficiency of advanced wastewater treatment: Target analysis of organic contaminants and (geno-) toxicity assessment tell a different story, Water Res., 50, 35-47.   DOI
18 Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miege, C. and Choubert, J.M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling, Chemosphere, 262.
19 Metzger, S., Rossler, A., Turk, J., Antakyali, D., Schulz, J., Wunderlin, P. and Meier, A. (2015). Status quo der Erweiterung von Klaranlagen um eine Stufe zur gezielten Spurenstoffelimination, Wasserwirtsch, Wassertech., 14-19.
20 Minakata, D., Li, K., Westerhoff, P. and Crittenden, J. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227.   DOI
21 Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L. and Sedlak, D.L. (2003). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review, Environ. Eng. Sci. 20(5), 389-404.   DOI
22 Chuang, Y.H. and Mitch, W.A. (2017). Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of N-nitrosamines and halogenated disinfection byproducts, Environ. Sci. Technol., 51(4), 2329-2338.   DOI
23 Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A. and Siegrist, H. (2012). Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon, Water Sci. Technol., 66(10), 2115-2121.   DOI
24 Buffle, M. and Von Gunten, U. (2003). "The chlorine-ammonia process for enhanced bromate minimization", Proceedings of Water Quality Technology Conference, 2-6 Nov, 2003, Philadelphia, USA, American Water Works Association.
25 Cedat, B., de Brauer, C., Metivier, H., Dumont, N. and Tutundjan, R. (2016). Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale, Water Res., 100, 357-366.   DOI
26 Eggen, R.I., Hollender, J., Joss, A., Scharer, M. and Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants, Environ. Sci. Technol., 7683-7689.
27 Hu, J., Aarts, A., Shang, R., Heijman, B. and Rietveld, L. (2016). Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal, J. Environ. Manage., 177, 45-52.   DOI
28 Kang, S. and Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins, Environ. Sci. Technol., 39(1), 134-140.   DOI
29 Son, H., Choi, S., An, B., Lee, H. and Yoom, H.S. (2021). Effect of changes in physical properties of granular activated carbon (GAC) on the adsorption of natural organic matter (NOM) with increasing the number of thermal regeneration: Pore size and NOM molecular weight, J. Korean Soc. Environ. Eng., 43(7), 537-546.   DOI
30 Mulder, M., Antakyali, D. and Ante, S. (2015). Costs of removal of micropollutants from effluents of municipal wastewater treatment plants-general cost estimates for the Netherlands based on implemented full scale post treatments of effluents of wastewater treatment plants in Germany and Switzerland, STOWA and Waterboard the Dommel, the Netherlands, 55.
31 Padhye, L.P., Hertzberg, B., Yushin, G. and Huang, C.H. (2011). N-nitrosamines formation from secondary amines by nitrogen fixation on the surface of activated carbon, Environ. Sci. Technol., 45(19), 8368-8376.   DOI
32 Park, N. and Jeon, J. (2021). Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization, Chemosphere, 263, 128014.   DOI
33 Pesqueira, J.F., Pereira, M.F.R. and Silva, A.M. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review, J. Clean. Prod., 261, 121078.   DOI
34 Rahman, S.M., Eckelman, M.J., Onnis-Hayden, A. and Gu, A.Z. (2018). Comparative life cycle assessment of advanced wastewater treatment processes for removal of chemicals of emerging concern, Environ. Sci. Technol., 52(19), 11346-11358.   DOI
35 Rizzo, L., Malato, S., Antakyali, D., Beretsou, V.G., Dolic, M.B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A.R.L. and Fatta-Kassinos, D. (2019). Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655, 986-1008.   DOI
36 Lee, Y., Escher, B.I. and Von Gunten, U. (2008). Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens, Environ. Sci. Technol., 42(17), 6333-6339.   DOI
37 Kim, I., Yamashita, N. and Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166(2-3), 1134-1140.   DOI
38 Kolkman, A., Martijn, B.J., Vughs, D., Baken, K.A. and van Wezel, A.P. (2015). Tracing nitrogenous disinfection byproducts after medium pressure UV water treat- ment by stable isotope labeling and high resolution mass spectrometry, Environ. Sci. Technol., 49(7), 4458-4465.   DOI
39 Lee, C., Yoon, J. and von Gunten, U. (2007). Oxidative degradation of N-nitro- sodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide, Water Res., 41(3), 581-590.   DOI
40 Lee, Y., Kovalova, L., McArdell, C.S. and von Gunten, U. (2014). Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent, Water Res., 64, 134-148.   DOI
41 Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, 473, 619-641.   DOI
42 Rosenfeldt, E.J., Chen, P.J., Kullman, S. and Linden, K.G. (2007). Destruction of estrogenic activity in water using UV advanced oxidation, Sci. Total Environ., 377(1), 105-113.   DOI
43 Naumov, S., Mark, G., Jarocki, A. and von Sonntag, C. (2010). The reactions of nitrite ion with ozone in aqueous solution - new experimental data and quantum-chemical considerations, Ozone Sci. Eng., 32(6), 430-434.   DOI
44 Sharpless, C.M. and Linden, K.G. (2003). Experimental and model comparisons of low- and medium-pressure Hg lamps for the Direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water, Environ. Sci. Technol., 37(9), 1933-1940.   DOI
45 Rosario-Ortiz, F.L., Wert, E.C. and Snyder, S.A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater, Water Res., 44(5), 1440-1448.   DOI
46 Sigmund, G., Gharasoo, M., Huffer, T. and Hofmann, T. (2020). Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials, Environ. Sci. Technol., 54(7), 4583-4591.   DOI
47 Schwaller, C., Hoffmann, G., Hiller, C.X., Helmreich, B. and Drewes, J.E. (2021). Inline dosing of powdered activated carbon and coagulant prior to ultrafiltration at pilot-scale-Effects on trace organic chemical removal and operational stability, Chem. Eng. J., 414, 128801.   DOI
48 Semitsoglou-Tsiapou, S., Templeton, M.R., Graham, N.J.D., Mandal, S., Leal, L.H. and Kruithof, J.C. (2018). Potential formation of mutagenicity by low pressure-UV/H2O2 during the treatment of nitrate-rich source waters, Environ. Sci.: Water Res. Technol., 4(9), 1252-1261.   DOI
49 Shah, A.D., Dotson, A.D., Linden, K.G. and Mitch, W.A. (2011). Impact of UV disinfection combined with chlorination/ chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water, Environ. Sci. Technol., 45, 3657-3664.   DOI
50 Son, H., Yoo, S.J., Roh, J.S. and Yoo, P.J. (2009). Biological activated carbon (BAC) process in water treatment, J. Korean Soc. Environ. Eng., 31(4), 308-323.
51 Son, H. and Jang, S. (2011). Occurrence of residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Korean Soc. Environ. Eng., 33(6), 453-479.   DOI
52 Tong, Y., McNamara, P.J. and Mayer, B.K. (2019). Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol., 5(5), 821-838.   DOI
53 Staehelin, J. and Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19(12), 1206-1213.   DOI
54 Streicher, J., Ruhl, A.S., Gnirss, R. and Jekel, M. (2016). Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal, Chemosphere, 156, 88-94.   DOI
55 Lee, Y. and Von Gunten, U. (2012). Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195.   DOI
56 Stalter, D., Magdeburg, A., Weil, M., Knacker, T. and Oehlmann, J. (2010a). Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout, Water Res., 44(2), 439-448.   DOI
57 Stefan, M.I. and Bolton, J.R. (2002). UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study, Helv. Chim. Acta, 85 (5), 1416.   DOI
58 von Gunten, U. (2003). Ozonation of drinking water: part I. Oxidation kinetics and product formation, Water Res., 37(7), 1443-1467.   DOI
59 von Gunten, U. and Oliveras, Y. (1998). Advanced oxidation of bromide- containing waters: bromate formation mechanisms, Environ. Sci. Technol., 32, 63-70.   DOI
60 von Sonntag, C. and von Gunten, U. (2012). Chemistry of Ozone in Water and Wastewater Treatment. IWA Publishing, London.
61 Wildhaber, Y.S., Mestankova, H., Schaerer, M., Schirmer, K., Salhi, E. and von Gunten, U. (2015). Novel test procedure to evaluate the treatability of wastewater with ozone, Water Res., 75, 324-335.   DOI
62 Wols, B.A. and Hofman-Caris, C.H.M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res., 46 (9), 2815-2827.   DOI
63 Hubner, U., Zucker, I. and Jekel, M. (2015) Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents, J. Water Reuse Desal., 5(1), 8.   DOI
64 Stalter, D., Magdeburg, A. and Oehlmann, J. (2010b). Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery, Water Res., 44(8), 2610-2620.   DOI
65 Fundneider, T., Alonso, V.A., Wick, A., Albrecht, D. and Lackner, S. (2020). Implications of biological activated carbon filters for micropollutant removal in wastewater treatment, Water Res., 189, 116588.   DOI
66 Hofman-Caris, R.C.H.M., Harmsen, D.J.H., Puijker, L., Baken, K.A., Wols, B.A. Beerendonk, E.F. and Keltjens, L.L.M. (2015). Influence of process conditions and water quality on the formation of mutagenic byproducts in UV/H2O2 processes, Water Res., 74, 191-202.   DOI
67 Jeong, D., Ham, S., Lee, W., Chung, H. and Kim, H. (2017). Study on occurrence and management of organic micropollutants in sewer systems, J. Korean Soc. Water Wastewater, 31(6), 551-566.   DOI
68 Knappe, D.R.U. (2006). Surface chemistry effects in activated carbon adsorption of industrial pollutants, Interface Sci. Technol., V(10), 155-177.   DOI
69 Keen, O.S. and Linden, K.G. (2013). Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent, Environ. Sci. Technol., 47(22), 13020-13030.   DOI
70 Martijn, B.J., Boersma, M.G., Vervoort, J.M., Rietjens, I.M.C.M. and Kruithof, J.C. (2014). Formation of genotoxic compounds by medium pressure ultraviolet treatment of nitrate-rich water, Desalin. Water Treat., 52(34-36), 6275-6281.   DOI
71 Elovitz, M.S., von Gunten, U. and Kaiser, H.P. (2000). Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties, Ozone Sci. Eng., 22(2), 123-150.   DOI
72 Mestankova, H., Schirmer, K., Escher, B.I., von Gunten, U. and Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes, Environ. Pollut., 161, 30-35.   DOI
73 Miklos, D.B., Hartl, R., Michel, P., Linden, K.G., Drewes, J.E., and Hubner, U. (2018a). UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136, 169-179.   DOI
74 Ra, J., Yoom, H., Son, H. and Lee, Y. (2020). Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination, Water Res., 184, 116123.   DOI
75 Kosaka, K., Asami, M., Ohkubo, K., Iwamoto, T., Tanaka, Y., Koshino, H., Echigo, S. and Akiba, M. (2014). Identification of a New N-nitrosodimethylamine precursor in sewage containing industrial effluents, Environ. Sci. Technol., 48(19), 11243-11250.   DOI
76 Worch, E. (2012). Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter.
77 Yu, H.W., Anumol, T., Park, M., Pepper, I., Scheideler, J. and Snyder, S.A. (2015). On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process, Water Res., 81, 250-260.   DOI
78 Rice, R.G., Robson, C.M., Miller, G.W. and Hill, A.G. (1981). Uses of ozone in drinking water treatment, AWWA, 73(1), 44-57.   DOI
79 Zhang, K., Zhong, S. and Zhang, H. (2020). Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning, Environ. Sci. Technol., 54(11), 7008-7018.   DOI
80 Zietzschmann, F., Altmann, J., Hannemann, C. and Jekel, M. (2015). Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 83, 52-60.   DOI
81 Brienza, M., Manasfi, R. and Chiron, S. (2019). Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment, Water Res., 162(2), 22-29.   DOI
82 Buffle, M.O., Schumacher, J., Meylan, S., Jekel, M. and Von Gunten, U. (2006). Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO.-scavengers on ozone decomposition and HO. generation, Ozone Sci. Eng., 28(4), 247-259.   DOI
83 Bui, X.T., Vo, T.P.T., Ngo, H.H., Guo, W.S. and Nguyen, T.T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications, Sci. Total Environ., 563, 1050-1067.   DOI
84 Choi, S., Lee, Y., Kim, Y.M., Hong, S.W., Son, H. and Lee, Y. (2021). A review on status of organic micropollutants from sewage effluent and their management strategies, J. Korean Soc. Water Wastewater, 35(3), 205-225.   DOI
85 Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. and Tchobanoglous, G. (2012). MWH's Water Treatment: Principles and Design. John Wiley & Sons.
86 Koppenol, W.H., Stanbury, D.M. and Bounds, P.L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Biol. Med., 49, 317-322.   DOI
87 Dodd, M.C., Kohler, H.P.E. and Von Gunten, U. (2009). Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes, Environ. Sci. Technol., 43(7), 2498-2504.   DOI
88 McArdell, C.S. and Meier, A. (2019). "The Swiss approach in reducing micropollutants in wastewater", STOWA Workshop, Beating micropollutants in WWTPs, 5 Nov 2019, Amsterdam, Netherland.
89 Kohler, C., Venditti, S., Igos, E., Klepiszewski, K., Benetto, E. and Cornelissen, A. (2012). Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment, J. Hazard. Mater., 239-240, 70-77.   DOI
90 Krahnstover, T. and Wintgens, T. (2018). Separating powdered activated carbon (PAC) from wastewater-Technical process options and assessment of removal efficiency, J. Environ. Chem. Eng., 6(5), 5744-5762.   DOI
91 Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K. and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: The role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935.   DOI
92 Lee, M., Blum, L.C., Schmid, E., Fenner, K. and von Gunten, U. (2017). A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms, Environ. Sci. Process Impacts, 19(3), 465-476.   DOI
93 Zimmermann, S.G., Wittenwiler, M., Hollender, J., Krauss, M., Ort, C., Siegrist, H. and von Gunten, U. (2011). Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection, Water Res. 45(2), 605-617.   DOI
94 Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A. and von Gunten, U. (2013). Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information, Environ. Sci. Technol., 47(11), 5872-5881.   DOI
95 Zietzschmann, F., Aschermann, G. and Jekel, M. (2016). Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents, Water Res., 102, 190-201.   DOI
96 Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F. and Jekel, M. (2014). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 65, 297-306.   DOI
97 Woermann, M. and Sures, B. (2020). Ecotoxicological effects of micropollutant-loaded powdered activated carbon emitted from wastewater treatment plants on Daphnia magna, Sci. Tot. Environ., 746, 141104.   DOI
98 Chen, Z., Li, M. and Wen, Q. (2017). Comprehensive evaluation of three sets of advanced wastewater treatment trains for treating secondary effluent: Organic micro-pollutants and bio-toxicity, Chemosphere, 189, 426-434.   DOI
99 Elovitz, M.S. and Von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The R(ct) concept, Ozone Sci. Eng., 21(3), 239-260.   DOI
100 Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2(3), 421-442.   DOI
101 Mestankova, H., Schirmer, K., Canonica, S. and von Gunten, U. (2014). Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes, Water Res., 66, 399-410.   DOI
102 Kovalova, L., Knappe, D.R., Lehnberg, K., Kazner, C. and Hollender, J. (2013). Removal of highly polar micropollutants from wastewater by powdered activated carbon, Environ. Sci. Pollut. Res., 20(6), 3607-3615.   DOI
103 Karanfil, T. and Kilduff, J.E. (1999). Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environ. Sci. Technol., 33(18), 3217-3224.   DOI
104 Merenyi, G., Lind, J., Naumov, S. and von Sonntag, C. (2010). The reaction of ozone with the hydroxide ion: mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4- in superoxide dismutation, Chem. Eur. J., 16(4), 1372-1377.   DOI
105 Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olive, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E. and Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents, Water Res., 72, 315-330.   DOI
106 Martijn, B.J., Kruithof, J.C., Hughes, R.M., Mastan, R.A., Van Rompay, A.R. and Malley, J.P. (2015). Induced genotoxicity in nitrate-rich water treated with medium-pressure ultraviolet processes, AWWA, 107(6), E301-E312.   DOI