폴리에스테르 중합 공정에서 발생되는 1,4-dioxane의 분해를 위한 파일럿 규모의 광펜톤산화처리

Photo-Fenton Oxidation Treatment of Pilot Scale for the Decomposition of 1,4-dioxane Generated in a Polyester Manufacturing Process

  • 소명호 (인하대학교 환경공학과) ;
  • 한지선 (인하대학교 환경공학과) ;
  • 한티힙 (인하대학교 환경공학과) ;
  • 서장원 (인하대학교 환경공학과) ;
  • 김창균 (인하대학교 환경공학과)
  • So, Myung-Ho (Department of Environmental Engineering, Inha University) ;
  • Han, Ji-Sun (Department of Environmental Engineering, Inha University) ;
  • Han, Thi-Hiep (Department of Environmental Engineering, Inha University) ;
  • Seo, Jang-Won (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University)
  • 투고 : 2008.07.03
  • 심사 : 2008.12.23
  • 발행 : 2009.01.31

초록

본 연구에서는 폴리에스테르 중합폐수의 배출 원수에 약 600 mg/L의 고농도로 존재하는 1,4-dioxane을 5 mg/L 이하까지 (2011년 규제 시행) 제거할 수 있는 고급산화공정의 현장 적용 기술을 개발하고자 구미지역 폴리에스테르 제조회사 중 K사의 폐수처리 시설을 선정하여 연구를 하였다. 공기의 공급 하에 광펜톤산화반응을 K사에 설치된 pilot에서 운전하였다. 막대형 산기관을 통해 공기를 공급하면서 10개의 UV-C 램프(240 ${\mu}W/cm^2$)의 조사 하에 과산화수소(2,800 ppm)와 철염(1,400 ppm)을 주입하였을 때 1,4-dioxane의 제거 효율이 2시간 만에 90%까지 나타나는 결과를 도출할 수 있었다. 그러나 처리수의 1,4-dioxane 농도는 약 60 mg/L으로 여전히 높았다. 그리하여 후속 처리로 bench-scale의 활성슬러지공정(V=8.9 L)을 이용하여 광펜톤산화 처리수 내의 1,4-dioxane 제거 가능성을 평가하였다. 그 결과로서 활성슬러지공정의 유출수내의 1,4-dioxane의 농도는 약 2~3 mg/L까지 저감되었으며 이를 통해, 광펜톤산화공정과 활성슬러지공정의 연계처리를 통해 1,4-dioxane 배출 허용기준(5 mg/L, 2011년)에 부합될 수 있는 효과적인 처리공정임을 입증하였다.

In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, South Korea was investigated regarding the release of high concentrations of 1,4-dioxane(about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2011). The pilot-scale (reactor volume, 10 $m^3$) treatment system using Photo-Fenton Oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2,800 ppm $H_2O_2$ and 1,400 ppm $FeSO_4$ were maintained along with 10 UV-C lamps (240 ${\mu}W/cm^2$) illuminated during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane. As a result, 1,4-dioxane in the effluent has been decreased as low as about 2~3 mg/L. Consequently, Photo-Fenton Oxidation coupled with activated sludge process can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard.

키워드

참고문헌

  1. Chemical Marketing Report(1998); Sax and Lewis(1993); sittin(1991); USITC(1994)
  2. Popoola, A. V., 'Mechanism of reaction involving the formation of dioxane byproduct during the production of poly (ethylene terephthalate),' J. Appl. 'Polym. Sci., 43, 1875-1877(1992) https://doi.org/10.1002/app.1991.070431011
  3. Sittig, M. (Ed), 'Handbook of toxic and hazardous chemicals and carcinogens,' Noyes Publishers, NJ(1991)
  4. Stepanov M. G., Arutyunyan A. V., 'Impaired central regulation of reproductive function due to unfavorable environmental factors (In Russian),' Vopr Med Khim, 41(5), 33-35(1995)
  5. NICNAS(National Industrial Chemicals Notification and Assessment Scheme), 1,4-Dioxane, Priority Existing of Chemical, 7(1998)
  6. Francis, A. J., Iden, C. R., Nine, B. J., Chang, C. K., 'Characterization of organics in leachates from low-level radioactive waste disposal sites,' Nucl. Technol., 50, 158-163(1980) https://doi.org/10.13182/NT80-A32541
  7. Mihaela, I. S., James, R. B., 'Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process,' Environ. Sci. Technol., 32, 1588-1595(1998) https://doi.org/10.1021/es970633m
  8. Mills, E. T., Stack, V. T., 'Biological oxidation of synthetic organic chemicals,' Proc. 8th Ind. Waste Conf., 83, 492-517(1954)
  9. Fincher, E. L., Payne, W. J., 'Bacterial utilization of glycol ethers,' Appl. Microbiol., 10, 542-547(1962)
  10. Francis, A. J., 'Proceedings of the international symposium on environmental migration of long-lived radionuclides,' International Atomic Energy Agency: Vienna, 415-419 (1982)
  11. Ware, G. W., 'p-Dioxane, in reviews of environmental contamination and toxicology,' Springer Verlag, New York, 106, 113-121(1998)
  12. Klecka, G. M., Gonsoir, S. J., 'Removal of 1,4-dioxane from wastewater,' J. Hazard. Mater., 13, 161-168(1986) https://doi.org/10.1016/0304-3894(86)80016-4
  13. Adams, C. D., Scanlan, P. A., Secrist, N. D., 'Oxidation and biodegradability enhancement of 1,4-Dioxane using hydrogen peroxide and ozone,' Environ. Sci. Technol., 28, 1812-1818(1994) https://doi.org/10.1021/es00060a010
  14. Mill, T., Gould, C. W., 'Free-radical oxidation of organic phosphoric acid salts in water using hydrogen peroxide, oxygen, and ultraviolet light,' Environ. Sci. Technol., 13, 205-208(1979) https://doi.org/10.1021/es60150a014
  15. Hill, R. R., Jeffs, G. E., Roberts, D. R., 'Photocatalytic degradation of 1,4-dioxane in aqueous solution,' J. Photochem. Photobiol A: Chem., 108, 55-58(1997) https://doi.org/10.1016/S1010-6030(96)04463-2
  16. Swope, H. G., Kenna, M., 'Effect of organic compounds on biochemical oxygen demand,' Sew. Ind. Waters Eng., 21, 467(1950)
  17. Burgess, M., Comments on draft, 'Treatment technologies for 1,4-Dioxnae: fundamentals and field Aapplications,' EPA(2005)
  18. Federal Remediation Technologies Roundtable (FRTR), 'Remediaion technologies screening matrix and reference guide,' Version 4.0, http://www.frtr.gov/matrix2/(2006)
  19. Horst, J. F., Comments on draft 'Treatment technologies for 1,4-Dioxane: fundamentals and field applications,' ARCADIS(2005)
  20. Park, Y. M., Pyo, H. S., Park, S. J., and Park, S. K., 'Development of the analytical method for 1,4-dioxane in water by liquid-liquid extraction,' Anal. Chim. Acta, 548, 109-115(2005) https://doi.org/10.1016/j.aca.2005.05.057
  21. Esplugas, S., Gimenez, J., Contreras, S., Rodriguez, E. P. M., 'Comparison of different advanced oxidation process for phenol degradation,' Water Res., 36, 1034-1042 (2002) https://doi.org/10.1016/S0043-1354(01)00301-3
  22. Ali, S. A., James, R., Bolton and Stephen, R. C., 'Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water,' Water Res., 31(4), 787-798(1997) https://doi.org/10.1016/S0043-1354(96)00373-9
  23. 한지선, 소명호, 김창균, '폴리에스테르 중합폐수의 활성슬러지 공정에서의 1,4-다이옥산 제거 및 16S rDNA에 의한 미생물 군집특성 평가,' 대한환경공학회지, 30(4), 393-400(2008)
  24. 김창균, 한지선, '1,4-다이옥산의 생물학적 제거방법 및 이의 제거장치,' 특허출원, 출원번호: 10-2008-0045425 (2008)
  25. Legrini, O., Oliveros, E., Braun, A. M., 'Photochemical processes for water treatment,' Chem. Rev., 671-698 (1993) https://doi.org/10.1021/cr00018a003
  26. Lipczynska-Kochany, E., 'Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction,' Chemosphere, 22(5,6), 529-539(1991) https://doi.org/10.1016/0045-6535(91)90064-K