Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide

졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해

  • Received : 1997.05.13
  • Accepted : 1997.08.01
  • Published : 1997.10.10

Abstract

$TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

n-propanol 용매내에서 titanium n-propoxide($Ti(O^nPr)_4$)의 가수분해반응에 의하여 $TiO_2$ 미분말을 합성하였고, 가수분해속도를 자외선 분광법에 의하여 측정하였다. 분말합성은 water/alkoxide의 농도비가 약 300정도에서 실시하였으며, 물농도, 반응온도, 반응시간 및 반응용액의 산 염기효과에 의한 합성조건을 조사하였다. 반응은 $Ti(O^nPr)_4$의 농도에 비하여 물농도를 과량으로 하여 유사일차반응으로 진행시켰고, 반응속도상수를 Guggenheim method로 계산하였다. 또한 물의 동위원소효과($D_2O$)를 측정하여 반응에 관여하는 물분자의 촉매성을 확인하였다. 실험결과 중성 및 염기성 용액 조건에서 $TiO_2$미분말이 합성되었고, 미세구조 관찰로부터 $TiO_2$입자는 직경 $0.4-0.7{\mu}m$ 정도의 구형입자로 확인되었으며, 물의 농도와 반응온도가 증가할수록, 반응시간이 감소할수록 입자크기는 작아지는 경향을 보였다. 물의 동위원소효과로부터, 물분자는 nucleophilic catalysis로 작용하고 있으며, 반응속도로부터 전이상태에 참여하는 n-value와 열역학적 파라미터를 계산한 결과, $Ti(O^nPr)_4$의 가수분해반응은 이분자 반응인 associative $S_N2$ mechanism으로 진행하는 것으로 추정되었다.

Keywords

References

  1. Advances in Chemistry Series v.23 Metal Alkoxides D. C. Bradley
  2. D. C. Bradley;R. C. Mehrotra;D. P. Gaur
  3. J. Non-Crystal. Solids v.100 R. C. Mehrotra
  4. Sol-Gel Chemistry of Transition Metal Oxide, Progress in Solid State Chemistry v.18 J. Livage;M. Henry;C Sanchez
  5. Molecular Characterization of Composite Interfaces E. R. Pohl;F. D. Osterholtz
  6. The Chemistry of Silica R. K. Iler
  7. Better Ceramics through chemistry K. D. Keefer;C. J. Brinker(ed.);D. E. Clark(ed.);D. R. Ulrich(ed.)
  8. J. Chem. Sco. R. E. Timms
  9. Physical and Chemical Aspects of Adsirbents and Catalysts C. Okkerse
  10. Better Ceramics through Chemistry D. R. Uhlmann;B. J. Jelinski;G. E. Wrek
  11. J. Am. Chem. Soc. v.11 C. G. Swain;R. M. Esteve;R. H. Jones
  12. J. of Korean Ind. & Eng. Chemistry v.7 J. J. Myung;Y. S. Chung;J. B. Kyong;H. K. Kim
  13. Phil. Mag. v.2 E. A. Gggenheim
  14. Anal. Chem. v.2 J. R. Bacon;J. N. Demos
  15. 窯業協會誌 v.93 T. Ikemoto;K. Uematsu;N. Mizutani;M. Kato
  16. Am. Ceram. Soc. Bull. v.66 no.10 J. H. Jean;D. M. Goy;T. A. Ring
  17. 無機材硏報告書 no.14 下平高次郞
  18. Better Ceramics through Chemistry K. D. Keefer;C. J. Brinker(ed.);D. E. Clark(ed.);D. R. Ulrich(ed.)
  19. Introduction to Ceramics(2nd) W. D. Kingery;H. K. Bowen;D. R. Uhlmann
  20. Material Science and Technology v.2B C. E. Williams;R. P. May;A. Guinier;R. W. Cahn(ed.);D. Haasen(ed.);E. J. Kramer(ed.)
  21. セラミツクス材料としてのTiO₂化學 no.1 菱田俊一
  22. J. Am. Chem. Soc. v.87 L. R. Fedor;T. C. Bruice
  23. J. Am. Chem. Soc. v.83 C. A. Bunton;V. J. Shiner, Jr
  24. J. Org. Chem. v.46 G. Gopalakrishnan;J. L. Hogg
  25. Acta. Chem. Scand. v.19 A. Kivinen
  26. Ber. Bunsenges Physics. Chem. v.68 R. F. Hudson
  27. Mechanism in Organic Chemistry R. W. Alder;R. Baker;J. M. Brown
  28. J. Am. Chem. Soc. v.99 R. Tashma;Z. Rappoport