• Title/Summary/Keyword: $Ti_{0.5}Al_{0.5}N$

Search Result 121, Processing Time 0.04 seconds

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong;Cho, Sung-Jin;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

Effect of Interlayer on TiN and CrN Thin Films of STS 420 Hybrid-Deposited by AlP and DC Magnetron Sputtering (AIP 와 스퍼터링으로 복합증착된 420 스테인리스강의 TiN과 CrN 박막에 미치는 중간층의 영향)

  • Choi, Woong-Sub;Kim, Hyun-Seung;Park, Burm-Su;Lee, Kyung-Ku;Lee, Doh-Jae;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.256-262
    • /
    • 2007
  • Effects of interlayer and the combination of different coating methods on the mechanical and corrosion behaviors of TiN and CrN coated on 420 stainless steel have been studied. STS 420 specimen were tempered at $300^{\circ}C$ for 1 hr in vacuum furnace. The TiN and CrN thin film with 2 ${\mu}m$ thickness were coated by arc ion plating and DC magnetron sputtering following the formation of interlayer for pure titanium and chromium with 0.2 ${\mu}m$ thickness. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and roughness tester. Mechanical properties such as hardness and adhesion also were examined. XRD patterns of TiN thin films showed that preferred TiN (111) orientation was observed. The peaks of CrN (111) and $Cr_2N$ (300) were only observed in CrN thin films deposited by arc ion plating. Both TiN and CrN deposited by arc ion plating had the higher adhesion and hardness compared to those formed by magnetron sputtering. The specimen of TiN and CrN on which interlayer deposited by magnetron sputtering and thin film deposited by arc ion plating had the highest adhesion with 22.2 N and 19.2 N. respectively. TiN and CrN samples shown the most noble corrosion potentials when the interlayers were deposited by using magnetron sputtering and the metal nitrides were deposited by using arc ion plating. The most noble corrosion potentials of TiN and CrN were found to be approximately -170 and -70 mV, respectively.

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

Quantitative Analysis of the Volcanic Cave Rocks in Mt. Peakdu Group and Cheju Island (백두산과 제주화산도에 있는 용암동굴의 X선 분석)

  • 김경훈
    • Journal of the Speleological Society of Korea
    • /
    • v.45 no.46
    • /
    • pp.9-31
    • /
    • 1996
  • The Mt. Peakdu is situated in north of the main peninsula, commanding geographically coordinated between longitude W($127^{\circ}$ 15' - $128^{\circ}$ 00') to E($128^{\circ}$ 15'- $129^{\circ}$ 00'), between latitude from S($41^{\circ}$ 15'- $42^{\circ}$ 00') to N($42^{\circ}$ 10'- $42^{\circ}$ 40'). The Manjyang-Gul in Cheju volcanic island is situated in the south of the main peninsula, commanding the Korean Strait, geographically coordinated longitude N($33^{\circ}$ 32' 26") and E($126^{\circ}$ 46' 48"). The quantitative analysis using XRF of volcanic rock samples for the north of Lu- Ming- Feng in Mt. Peakdu Group and the Manjang-Gul in Cheju island was Performed. The major chemical components by group analysis are as follows; Peakdu-Mt. Cheju Peakdu-Mt. Cheju (1) $Na_2O$(3.29Wt% and 3.27Wt%) (2) MgO (3.95Wt% and 6.l5Wt%) (3) $Al_2O_3$((17.64Wt% and 15.l7Wt%) (4) $SiO_2$((50.62Wt% and 50.99Wt%) (5) $P_2O_5$ (0.36Wt% and 0.30Wt%) (6) $K_2O$ (1.37Wt% and 1.04Wt%) (7) CaO (8.56Wt% and 8.06Wt%) (8) $TiO_2$ (2.37Wt% and 2.l5Wt%) (9) MnO (0.llWt% and 0.l6Wt%) (10) $Fe_2O_3$(9.l2Wt% and 12.56Wt%) The Group analysis data were compared in the relation within the age of formation for $0.16{\pm}0.08Ma$ in Mt. Peakdu Group, and $0.42{\pm}42Ma$ or $0.42{\pm}42Ma$ in Cheju island for K-Ar age. The crystal structure are mixed crystal of monoclinic, hexagonal and triclinic system in Mt. Peakdu Group and mixed structure of triclinic and cubic system in Cheju volcanic island.ic island.

  • PDF

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

The Effect of Pretreatment for Cemented Carbide Substrate Using Wet Blasting

  • Hong, Sung-Pill;Kim, Soo-Hyun;Kang, Jae-Hoon;Yoon, Yeo-Kyun;Kim, Hak-Kyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1102-1103
    • /
    • 2006
  • The pretreatment for substrate was carried out in change of gun pressure of $0.5\sim3.5$ bar using wet blasting. The size of $Al_2O_3$ powder was about $50{\sim}150{\mu}m$. As the results, the surface roughness of cemented carbide substrate was improved with increment of gun pressure of wet blasting. A new surface layer was formed and Co particles were uniformly distributed over the entire surface after pretreatment. The adhesion of the pretreated substrate in same PVD-TiAlN film was improved and in approximately $Ra=90\sim120\;nm$ shown the best adhesion value.

  • PDF

Photoconductivity in Mg-doped p-type GaN by MBE

  • ;;;;;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.120-120
    • /
    • 1999
  • III-nitride계 물질들은 blue와 UV 영역의 LED, LD와 같은 광소자뿐만 아니라 HBT, FET와 같은 전자소자로도 널리 응용되고 있다. 이와 같은 물질을 이용한 소자를 제작할 수 있는 낮은 저항의 ohmic contact은 필수적이다. Al이나 Ti와 같은 물질을 기초로 한 n-GaN의 경우는 이미 많은 연구결과가 발표되어 전기적 광학적 소자를 동작하는데 충분히 낮은 ohmic contact저항( )을 었다. 그러나 p-GaN의 ohmic contact은 아직까지 많은 문제점을 내포하고 있다. 그 중의 하나는 높은 doping 농도( )의 p-GaN 박막을 성장하기가 어렵다는 것이며, 또 하나는 낮은 접촉 비저항을 얻기 위해선 7.5eV이상의 큰 재가 function을 지닌 금속을 선택해야 한다. 그러나 5.5eV 이상의 재가 function을 갖는 금속은 존재하지 않는다. 위와 같은 문제점들은 p-GaN의 접촉 비저항이 이상의 높은 값을 갖게 만들고 있으며, 이에 대한 해경방안으로는 고온의 열처리를 통하여 p-GaN와 금속 사이에서 화학적 반응을 일으킴으로써 표면 근처에서 캐리어농도를 증가시키고, 캐리어 수송의 형태가 tunneling 형태로 일어날 수 있도록 하는 tunneling current mechanism을 이용하는 것이다. 이로 인해 결국 낮은 접촉 비저항을 얻을 수 있게되며, 일반적으로 p-GaN에서는 Nidl 좋은 물질로 알려져 있다. 그러나 Ni은 50$0^{\circ}C$이상의 열처리에서 쉽게 산화되는 특성 때문에 높은 캐리어를 얻는데 어려운 문제점이 있다. 이에 본 연구에서는 MBE로 성장된 p-GaN박막을 Mg의 activation을 더욱 증가시키기 위해 N2 분위기에서 15분간 90$0^{\circ}C$에서 annealing을 하였으며, ohmic 접촉을 위한 금속으로 높은 재가 function과 좋은 adhesion 그리고 낮은 자체저항을 가지고 있는 Ni/Au를 ohmic metal로 하여 contact한 후에 90$0^{\circ}C$에서 10초간 rapid thermal annealing (RTA)처리를 했다. 성장된 박막의 광학적 성질은 PL로써 측정하였으며, photoconductivity 실험을 통해 impurity의 life time을 분석하였고, persistent photoconductivity를 통해 dark current를 측정하였다. 또한 contact resistance를 계산하기 위해 circular-TLM method을 이용하여 I-V 특성을 조사하였다.

  • PDF

Characterization of Size Distribution and Water Solubility of 15 Elements in Atmospheric Aerosols

  • Park, Jeong-Ho;Sun, Jeong-Min;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.1-7
    • /
    • 2001
  • The elemental characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The aerosol particles were samples at 12 individual size ranges between 0.01 and 30㎛. Collected aerosol particles were separated into both soluble and insoluble components. The concentrations of 15 elements in both components were determined by a PIXE analysis using a 2.0 MeV-proton beam. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The maximum rations of S in July and December were 5.5 and 3.8 %, and they appeared in the size range of 0.47∼1.17㎛(stage No. 6 or 7) . The ratios of a S at non-separated size were 3.1 and 2.2 % in July and December, respectively, On the other hand, the maximum rations of Si in July and December were 7.0 and 5.4% and they appeared in the size range of 5.1∼30㎛(stage No. 0∼2). The ratios of Si at the non-separated size were 2.1 and 1.8% in July and December, respectively, The mass diameter of 12 elements ranged between 0.59㎛ of S and 3.20 of Fe. More than 90% of atmospheric aerosols consisted of the light elements such as C, N, O, H and Al. The soluble component was dominant in the smaller size range and the insoluble component in the larger size range. Large portions of Si. Ti and Fe existed in insoluble state. By contrast, S, Cl, Ca, Zn and Br were dissolved in water.