• Title/Summary/Keyword: $TiO_2$thin films

Search Result 1,283, Processing Time 0.034 seconds

PZT thin capacitor characteristics of the using Pt-Ir($Pt_{80}Ir_{20}$)-alloy (Pt-Ir($Pt_{80}Ir_{20}$)-alloy를 이용한 PZT 박막 캐패시터 특성)

  • Jang, Yong-Un;Chang, Jin-Min;Lee, Hyung-Seok;Lee, Sang-Hyun;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.47-52
    • /
    • 2002
  • A processing method is developed for preparing sol-gel derived $Pb(Zr_{1-x}Ti_x)O_3$ (x=0.5) thin films on Pt-Ir($Pt_{80}Ir_{20}$)-alloy substrates. The as-deposited layer was dried on a plate in air at $70^{\circ}C$. And then it was baked at $1500^{\circ}C$, annealed at $450^{\circ}C$ and finally annealed for crystallization at various temperatures ranging from $580^{\circ}C$ to $700^{\circ}C$ for 1hour in a tube furnace. The thickness of the annealed film with three layers was $0.3{\mu}m$. Crystalline properties and surface morphology were examined using X-ray diffractometer (XRD). Electrical properties of the films such as dielectric constant, C-V, leakage current density were measured under different annealing temperature. The PZT thin film which was crystallized at $600^{\circ}C$ for 60minutes showed the best structural and electrical dielectric constant is 577. C-V measurement show that $700^{\circ}C$ sample has window memory volt of 2.5V and good capacitance for bias volts. Leakage current density of every sample show $10^{-8}A/cm^2$ r below and breakdown voltage(Vb) is that 25volts.

  • PDF

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

A Study on the Switching Characteristcs of PLT(10) Thin Films (PLT(10) 박막의 Switching 특성에 관한 연구)

  • Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.63-70
    • /
    • 1999
  • A PLT(10) thin film has been deposited on $Pt/TiO_2/SiO_2/Si$ substrate by sol-gel method, and its switching characteristics have been investigated with various top electrode areas, input pulse voltages and loan resistances. As the external input pulse voltage increases from 2V to 5V, the switching time decreases from $0.49{\mu}s$ to $0.12{\mu}s$. The activation energy ($E_a$) obtained from the relations between the switching time and the applied pulse voltage is evaluated as 209kV/cm. The switched charge densities at 5V obtained from the hysteresis loop and the polarization switching are $11.69{\mu}C/cm^2$ and $13.02{\mu}C/cm^2$, respectively, which agree relatively well with each other and show the difference of 10%. When the top electrode area increases from TEX>$3.14{\times}10^{-4}cm^2$ to $5.03{\times}10^{-3}cm^2$ and the load resistance increases from 50${\Omega}$ to 3.3$k{\Omega}$, the switching time increases from $0.12{\mu}s$ to $1.88{\mu}s$ and from $0.12{\mu}s$ to $9.7{\mu}s$, respectively. These switching characteristics indicate that PLT(10) thin film can be well applied in nonvolatile memory devices.

  • PDF

Polarization properties of SBT capacitor with annealing temperatures (열처리에 따른 SBT 캐패시터의 분극특성)

  • Cho, C.N.;Kim, J.S.;Shin, C.G.;Chung, I.H.;Lee, S.G.;Lee, D.G.;Jung, D.H.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.9-12
    • /
    • 2001
  • The $Sr_{0.8}Bi_{2.4}Ta_2O_9(SBT)$ thin films are deposited on Pt-coated electrode($Pt/TiO_2/SiO_2/Si$) using RF magnetron sputtering method. With increasing post-annealing temperature from $600[^{\circ}C]$ to $850[^{\circ}C]$, Bi-layered perovskite phase was crystallized above $650[^{\circ}C]$. The maximum remanent polarization and the coercive electric field is 11.60[${\mu}C/cm^{2}$] 48[kV/cm] respectively. The leakage current density of SBT capacitor at post-annealing temperature of $750[^{\circ}C]$ is $1.01{\times}10^{-8}A/cm^2$ at 100[kV/cm]

  • PDF

Dielectric Properties of SBT capacitor with annealing temperatures (열처리 온도에 따른 Pt/SBT/Pt 캐패시터의 유전특성)

  • Cho, C.N.;Oh, Y.C.;Jhung, I.H.;Kim, J.S.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1546-1548
    • /
    • 2001
  • The $Sr_{0.8}Bi_{2.4}Ta_2O_9$(SBT) thin films are deposited on Pt-coated electrode(Pt/$TiO_2$/ $SiO_2$/Si) using RF magnetron sputtering method. With increasing annealing temperature from 600[$^{\circ}C$] to 850[$^{\circ}C$], Bi-layered perovskite phase was crystallized above 650[$^{\circ}C$]. The dielectric constant is 213 at annealing temperature of 750[$^{\circ}C$] and dielectric loss have a stable value within 0.1. Leakage current density is $1.01{\times}10^{-8}A/cm^2$ at annealing temperature of 750[$^{\circ}C$].

  • PDF

Lamellar Structured TaN Thin Films by UHV UBM Sputtering (초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구)

  • Lee G. R.;Shin C. S.;Petrov I.;Greene J, E.;Lee J. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

The etching characteristics of PZT thin films in Ar/$Cl_2/BCl_3$ plasma using ICP (ICP를 이용한 Ar/$Cl_2/BCl_3$ 플라즈마에서 PZT 식각 특성)

  • An, Tae-Hyun;Kim, Kyoung-Tae;Lee, Young-Hie;Seo, Yong-Jin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.848-850
    • /
    • 1999
  • In this study, PZT etching was performed using planar inductively coupled Ar(20)/$Cl_2/BCl_3$ plasma, The etch rate of PZT film was 2450 $\AA/min$ at Ar(20)/$BCl_3$(80) gas mixing ratio and substrate temperature of $80^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis for film composition was utilized. The chemical bond of PbO is broken by ion bombardment, and the peak of metal Pb in a Pb 4f peak begins to appear upon etching, decreasing Pb content faster than Zr and Ti. As increase content of additive $BCl_3$, the relative content of oxygen decreases rapidly. We thought that abundant Band BCl radicals made volatile oxy-compound such as $B_{x}O_{y}$ and/or $BClO_x$ bond. To understand etching mechanism, Langmuir probe and optical emission spectroscopy (OES) analysis were utilized for plasma diagnostic.

  • PDF

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

Microwave Annealing in Ag/HfO2/Pt Structured ReRAM Device

  • Kim, Jang-Han;Kim, Hong-Ki;Jang, Ki-Hyun;Bae, Tae-Eon;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.373-373
    • /
    • 2014
  • Resistive-change random access memory (ReRAM) device is one of the promising candidates owing to its simple structure, high scalability potential and low power operation. Many resistive switching devices using transition metal oxides materials such as NiO, Al2O3, ZnO, HfO2, $TiO_2$, have attracting increased attention in recent years as the next-generation nonvolatile memory. Among various transition metal oxides materials, HfO2 has been adopted as the gate dielectric in advanced Si devices. For this reason, it is advantageous to develop an HfO2-based ReRAM devices to leverage its compatibility with Si. However, the annealing temperature of these high-k thin films for a suitable resistive memory switching is high, so there are several reports for low temperature process including microwave irradiation. In this paper, we demonstrate the bipolar resistive switching characteristics in the microwave irradiation annealing processed Ag/HfO2/Pt ReRAM device. Compared to the as-deposited Ag/HfO2/Pt device, highly improved uniformity of resistance values and operating voltage were obtained from the micro wave annealing processed HfO2 ReRAM device. In addition, a stable DC endurance (>100 cycles) and a high data retention (>104 sec) were achieved.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.