• Title/Summary/Keyword: $TiO_2$ nanotube

Search Result 143, Processing Time 0.036 seconds

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst (Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Jang, Kyung-Wook;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation

  • Park, Hun;Kim, Ho-Gi;Choi, Won-Youl
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.112-115
    • /
    • 2010
  • This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.

Development of Preparation Technology for TiO2 Nanotube Photocatalyst (광촉매 활용을 위한 TiO2 나노튜브 제조기술 개발)

  • Koo, Hyemin;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2015
  • In this study $TiO_2$ nanotube was grown on Ti by anodic oxidation to be used as a photocatalyst. The growth and formation of $TiO_2$ nanotube was monitored during anodization in ethylene glycol electrolyte by changing voltage and composition of electrolyte. Commercially available titanium plate (purity>99.8%, thickness:1mm) Applied voltage and concentration of $NH_4F$ and $H_2O$ were varied to find the optimum condition. Applied voltage is important to make $TiO_2$ nanotube and the electrolyte containing ethylene glycol, 0.2 wt% $NH_4F$ and 2 vol% $H_2O$ was confirmed to be the optimum conditions for the formation and growth of $TiO_2$ nanotubes.

Transformation of TiO2 Film to Titanate Nanotube Thin Film Using Hydrothermal Method

  • Guo, Yupeng;Lee, Nam-Hee;Oh, Hyo-Jin;Yoon, Cho-Rong;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.147-148
    • /
    • 2007
  • In this study, the technology to grow oriented nanotube thin film from dip-coated $TiO_2$ using hydrothermal method has been successfully developed. The effects of preparation parameters, such as reaction temperature, duration and post treatment conditions on the film morphologies and the adherence to the substrate, have been examined. A general formation mechanism of oriented titanate nanotube thin film is proposed in terms of the detailed observation of the products via two dimensional surface FESEM studies and HRTEM images. The overall formation of $TiO_2-based$ nanotube thin film can be summarized with three successive steps: (1) $TiO_2$ dissolving and amorphous $Na_2TiO_3$ deposition process; (2) layered $Na_2Ti_3O_7$ formation via spontaneous crystallization and rapid growth process; (3) formation of nanotube thin film via $Na_2Ti_3O_7$ splitting and multilayer scrolling process of (100) planes around the c axis of $Na_2Ti_3O_7$.

  • PDF

Preparation of TiO2 Nanotube Arrays from Thin Film Grown by RF Sputtering

  • Kim, Chang Woo
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.105-108
    • /
    • 2018
  • Transparent $TiO_2$ nanotube arrays are successfully prepared by a two-step approach involving electrochemical anodization and RF magnetron sputtering. First, a Ti film is deposited on an FTO substrate by RF magnetron sputtering at room temperature. The morphologies of the Ti film are controlled by the working distance, Ar flow, and DC power. Second, an anodization treatment is electrochemically performed for the formation of nanotube arrays from the deposited Ti film, followed by post-annealing treatment in air for the formation of $TiO_2$ crystallization. The back side of the crystallized $TiO_2$ nanotube arrays is illuminated with solar light to characterize the photoelectrochemical reaction, and their photoelectrochemical properties are investigated. This work provides information on application of a thin film deposited by RF sputtering in the field of photoelectrochemical water splitting.

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

Water-splitting Performance of TiO2 Nanotube Arrays Annealed in NH3 Ambient

  • Kim, Se-Im;Kim, Sung-Jin;Yang, Bee-Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.200-204
    • /
    • 2011
  • Increase of surface area and decrease of band gap in $TiO_2$ semiconductors are significant to improve the efficiency of water splitting by photoelectrolysis. In this study $TiO_2$ nanotube arrays with ~7 um length and ~100 nm diameter were fabricated by an anodizing technique of titanium foils using DMSO (dimethyl sulfoxide)-based electrolytes. Then to control the band gap of the $TiO_2$ arrays, they were annealed at $550^{\circ}C$ for up to 180 min in $NH_3$ gas ambient. The samples annealed in $NH_3$ gas for 30 min and 60 min showed superior photo-conversion efficiency for water splitting under white and visible light. A $TiO_2$ nanotube annealed in $NH_3$ gas ambient for a period longer than 120 min showed 1 order higher leakage current. It is believed that the decrease of band gap and increase of conductivity in $TiO_2$ nanotube arrays due to $NH_3$ gas treatments result in the superior water-splitting performance.

Preparation of Nanotube-shaped $TiO_2$ Powder (Nanotube형 $TiO_2$ 분말의 제조)

  • Seo, Dong-Seok;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.700-704
    • /
    • 2000
  • Titanium hydroxide precipitate was obtained by the reaction of 0.5M TiOCl2 and 5M NH4OH solutions, then anatase TiO2 powder with nanotubes was prepared by the digestion of the heat-treated powder in 5M NaOH solution. Nanotube was formed for anatase TiO2 powder digested at 10$0^{\circ}C$ above, and the amount and length of nanotube increased with the digestion temperature. In the case of the powder digested at 15$0^{\circ}C$ for 12h, the formed nanotube was 100~150nm in length, 10~20 nm in diameter, and 2nm in width of the walls on both sides of the nanotube. The powder digested at 15$0^{\circ}C$ for 12h showed the highest specific surface area of 270$m^2$/g.

  • PDF