Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.1.14

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Lee, Young-Ki (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Jang, Kyung-Wook (Department of Materials Science, Hanseo University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.32, no.1, 2022 , pp. 14-22 More about this Journal
Abstract
To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.
Keywords
reduced $TiO_2$ nanotube; Pd nanoparticle; band gap energy; aniline blue; dye degradation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Lian, W. Wang, G. Li, F. Tian, K. S. Schanze and H. Li, ACS Appl. Mater. Interfaces, 9, 16959 (2017).   DOI
2 Z. Li, Y. Ding, W. Kang, C. Li, D. Lin, X. Wang, Z. Chen, M. Wu and D. Pan, Electrochim. Acta, 161, 40 (2015).   DOI
3 Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q, Zhu and W. Zhou, ACS Appl. Mater. Interfaces, 8, 26851 (2016).   DOI
4 M. Wang, Z. Cui, M. Yang, L. Lin, X. Chen, M. Wang and J. Han, J. Colloid Interface Sci., 544, 1 (2019).   DOI
5 G. Li, Z. Lian, X. Li, Y. Xu, W. Wang, D. Zhang, F. Tian and H. Li, J. Mater. Chem. A, 3, 3748 (2015).   DOI
6 Q. Wang, R. Jin, M. Zhang and S. Gao, J. Alloys Compd., 690, 139 (2017).   DOI
7 L. Pan, J.-J. Zou, S. Wang, Z.-F. Huang, A. Yu, L. Wang and X. Zhang, Chem. Commun., 49, 6593 (2013).   DOI
8 L. Pan, J.-J. Zou, X. Zhang and L. Wang, J. Am. Chem. Soc., 133, 10000 (2011).   DOI
9 H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature, 453, 638 (2008).   DOI
10 Y. Chen, W. Li, J. Wang, Y. Gan, L. Liu and M. Ju, Appl. Catal., B, 191, 94 (2016).   DOI
11 X. Deng, H. Zhang, R. Guo, Q. Ma, Y. Cui, X. Cheng, M. Xie and Q. Cheng, Sep. Purif. Technol., 192, 329 (2018).   DOI
12 B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing and J. Zhang, Sci. Rep., 5, 8591 (2015).   DOI
13 B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006).   DOI
14 X. Xu, J. Cai, M. Zhou, X. Du and Y. Zhang, J. Hazard. Mater., 382, 121096 (2020).   DOI
15 X. Chen, X. Peng, L. Jiang, X. Yuan, J. Fei and W. Zhang, Chem. Eng. J., 427, 130945 (2022).   DOI
16 K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao and J. Lu, ACS Appl. Mater. Interfaces, 9, 11577 (2017).   DOI
17 A. Monamary and K. Vijayalakshmi, Ceram. Int., 44, 22957 (2018).   DOI
18 J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, S.-J. Suh and H.-J. Oh, Korean J. Mater. Res., 29, 790 (2019).   DOI
19 L. Ainouche, L. Hamadou, A. Kadri, N. Benbrahim and D. Bradai, Sol. Energy Mater. Sol. Cells, 151, 179 (2016).   DOI
20 K. Lv, J. Yu, L. Cui, S. Chen and M. Li, J. Alloys Compd., 509, 4557 (2011).   DOI
21 M. Liu, X. Qiu, M. Miyauchi and K. Hashimoto, Chem. Mater., 23, 5282 (2011).   DOI
22 B. Jiang, Y. Tang, Y. Qu, J.-Q. Wang, Y. Xie, C. Tian, W. Zhou and H. Fu, Nanoscale, 7, 5035 (2015).   DOI
23 Y. Xu, S. Wu, P. Wan, J. Sun and Z. D. Hood, RSC Adv., 7, 32461 (2017).   DOI
24 T. Jedsukontorn, T. Ueno, N. Saito and M. Hunsom, J. Alloys Compd., 726, 567 (2017).   DOI
25 S.-Y. Li, Z.-L. Liu, G.-X. Xiang, B.-H. Ma, X.-D. Meng and Y.-L. He, Ceram. Int., 45, 767 (2019).   DOI