DOI QR코드

DOI QR Code

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst

Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Lee, Young-Ki (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Jang, Kyung-Wook (Department of Materials Science, Hanseo University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • 이종호 (한서대학교 화학과) ;
  • 이영기 (성균관대학교 신소재공학부) ;
  • 김영직 (성균관대학교 신소재공학부) ;
  • 장경욱 (한서대학교 신소재공학과) ;
  • 오한준 (한서대학교 신소재공학과)
  • Received : 2021.11.23
  • Accepted : 2021.12.16
  • Published : 2022.01.27

Abstract

To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.

Keywords

Acknowledgement

This work was supported by 2020 research program of the Hanseo University, Korea.

References

  1. Q. Wang, R. Jin, M. Zhang and S. Gao, J. Alloys Compd., 690, 139 (2017). https://doi.org/10.1016/j.jallcom.2016.07.281
  2. L. Pan, J.-J. Zou, S. Wang, Z.-F. Huang, A. Yu, L. Wang and X. Zhang, Chem. Commun., 49, 6593 (2013). https://doi.org/10.1039/c3cc42152j
  3. L. Pan, J.-J. Zou, X. Zhang and L. Wang, J. Am. Chem. Soc., 133, 10000 (2011). https://doi.org/10.1021/ja2035927
  4. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature, 453, 638 (2008). https://doi.org/10.1038/nature06964
  5. K. Lv, J. Yu, L. Cui, S. Chen and M. Li, J. Alloys Compd., 509, 4557 (2011). https://doi.org/10.1016/j.jallcom.2011.01.103
  6. Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q, Zhu and W. Zhou, ACS Appl. Mater. Interfaces, 8, 26851 (2016). https://doi.org/10.1021/acsami.6b09061
  7. Y. Chen, W. Li, J. Wang, Y. Gan, L. Liu and M. Ju, Appl. Catal., B, 191, 94 (2016). https://doi.org/10.1016/j.apcatb.2016.03.021
  8. L. Ainouche, L. Hamadou, A. Kadri, N. Benbrahim and D. Bradai, Sol. Energy Mater. Sol. Cells, 151, 179 (2016). https://doi.org/10.1016/j.solmat.2016.03.013
  9. G. Li, Z. Lian, X. Li, Y. Xu, W. Wang, D. Zhang, F. Tian and H. Li, J. Mater. Chem. A, 3, 3748 (2015). https://doi.org/10.1039/C4TA02873B
  10. X. Deng, H. Zhang, R. Guo, Q. Ma, Y. Cui, X. Cheng, M. Xie and Q. Cheng, Sep. Purif. Technol., 192, 329 (2018). https://doi.org/10.1016/j.seppur.2017.10.029
  11. M. Liu, X. Qiu, M. Miyauchi and K. Hashimoto, Chem. Mater., 23, 5282 (2011). https://doi.org/10.1021/cm203025b
  12. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing and J. Zhang, Sci. Rep., 5, 8591 (2015). https://doi.org/10.1038/srep08591
  13. Z. Lian, W. Wang, G. Li, F. Tian, K. S. Schanze and H. Li, ACS Appl. Mater. Interfaces, 9, 16959 (2017). https://doi.org/10.1021/acsami.6b11494
  14. B. Jiang, Y. Tang, Y. Qu, J.-Q. Wang, Y. Xie, C. Tian, W. Zhou and H. Fu, Nanoscale, 7, 5035 (2015). https://doi.org/10.1039/c5nr00032g
  15. Z. Li, Y. Ding, W. Kang, C. Li, D. Lin, X. Wang, Z. Chen, M. Wu and D. Pan, Electrochim. Acta, 161, 40 (2015). https://doi.org/10.1016/j.electacta.2014.12.132
  16. B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006). https://doi.org/10.1021/jp063972n
  17. Y. Xu, S. Wu, P. Wan, J. Sun and Z. D. Hood, RSC Adv., 7, 32461 (2017). https://doi.org/10.1039/c7ra04885h
  18. X. Xu, J. Cai, M. Zhou, X. Du and Y. Zhang, J. Hazard. Mater., 382, 121096 (2020). https://doi.org/10.1016/j.jhazmat.2019.121096
  19. X. Chen, X. Peng, L. Jiang, X. Yuan, J. Fei and W. Zhang, Chem. Eng. J., 427, 130945 (2022). https://doi.org/10.1016/j.cej.2021.130945
  20. T. Jedsukontorn, T. Ueno, N. Saito and M. Hunsom, J. Alloys Compd., 726, 567 (2017). https://doi.org/10.1016/j.jallcom.2017.08.028
  21. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao and J. Lu, ACS Appl. Mater. Interfaces, 9, 11577 (2017). https://doi.org/10.1021/acsami.6b16191
  22. M. Wang, Z. Cui, M. Yang, L. Lin, X. Chen, M. Wang and J. Han, J. Colloid Interface Sci., 544, 1 (2019). https://doi.org/10.1016/j.jcis.2019.02.080
  23. S.-Y. Li, Z.-L. Liu, G.-X. Xiang, B.-H. Ma, X.-D. Meng and Y.-L. He, Ceram. Int., 45, 767 (2019). https://doi.org/10.1016/j.ceramint.2018.09.243
  24. A. Monamary and K. Vijayalakshmi, Ceram. Int., 44, 22957 (2018). https://doi.org/10.1016/j.ceramint.2018.09.093
  25. J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, S.-J. Suh and H.-J. Oh, Korean J. Mater. Res., 29, 790 (2019). https://doi.org/10.3740/MRSK.2019.29.12.790