DOI QR코드

DOI QR Code

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation

  • Park, Hun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Ho-Gi (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Won-Youl (Department of Metal and Materials Engineering, Kangnung-wonju National University)
  • 투고 : 2010.05.04
  • 심사 : 2010.05.13
  • 발행 : 2010.06.25

초록

This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.

키워드

참고문헌

  1. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006) [DOI: 10.1021/nl052099j].
  2. H. Park, D. J. Yang, J. S. Yoo, K. S. Mun, W. R. Kim, H. G. Kim, and W. Y. Choi, J. Ceram. Soc. Jpn. 117, 596 (2009) [DOI: 10.2109/jcersj2.117.596].
  3. H. Park, D. J. Yang, H. G. Kim, S. J. Cho, S. C. Yang, H. Lee, and W. Y. Choi, J. Electroceram. 23, 146 (2009) [DOI: 10.1007/s10832-007-9341-x].
  4. D.J. Yang, H. Park, S. J. Cho, H. G. Kim, and W. Y. Choi, J. Phys. Chem. Solids 69, 1272 (2008) [DOI: 10.1016/j.jpcs.2007.10.107].
  5. H. Park, W. R. Kim, H. T. Jeong, J. J. Lee, H. G. Kim, and W. Y. Choi, Sol. Energy Mater. Sol. Cells in press [DOI: 10.1016/j.solmat.2010.02.017].
  6. G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, J. Mater. Res. 19, 628 (2004) [DOI: 10.1557/JMR.2004.0079].
  7. A. Ghicov, H. Tsuchiya, R. Hahn, J. M. Macak, A. G. Munoz, and P. Schmuki, Electrochem. Comm. 8, 528 (2006) [DOI: 10.1016/j.elecom.2006.01.015].
  8. G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, and P. Knauth, Chem. Mater. 21, 63 (2009) [DOI: 10.1021/cm801670u].
  9. P. Hoyer, Langmuir 12, 1411 (1996) [DOI: 10.1021/la9507803].
  10. J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, and T. Shimizu, Chem. Mater. 14, 1445 (2002) [DOI: 10.1021/cm011625e].
  11. Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, and H. Xu, J. Am. Chem. Soc. 125, 12384 (2003) [DOI: 10.1021/ja0369461].
  12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998) [DOI: 10.1021/la9713816].
  13. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res. 16, 3331 (2001) [DOI: 10.1557/JMR.2001.0457].
  14. J. M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005) [DOI: 10.1002/anie.200462459].
  15. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006) [DOI: 10.1016/j.solmat.2006.04.007].
  16. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Solid-State Lett. 6, B12 (2003) [DOI: 10.1149/1.1545192].
  17. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Surf. Interface Anal. 27, 629 (1999) [DOI: 10.1002/(SICI)1096-9918(199907)27:7<629::AIDSIA551>3.0.CO;2-0].
  18. Q. Y. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res. 20, 230 (2005) [DOI: 10.1557/JMR.2005.0020].
  19. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006) [DOI: 10.1021/jp064020k].
  20. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, and C. A. Grimes, J. Phys. Chem. C 111, 14992 (2007) [DOI: 10.1021/jp075258r].
  21. U. Diebold, Surf. Sci. Rep. 48, 53 (2003) [DOI: 10.1016/S0167-5729(02)00100-0].
  22. J. H. Kim, S. Lee, and H. S. Im, Appl. Surf. Sci. 151, 6 (1999) [DOI: 10.1016/S0169-4332(99)00269-X].
  23. Y. Choi, T. Umebayashi, and M. Yoshikawa, J. Mater. Sci. 39, 1837 (2004) [DOI: 10.1023/B:JMSC.0000016198.73153.31].

피인용 문헌

  1. Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-0737-2
  2. Anodization parameters influencing the morphology and electrical properties of TiO 2 nanotubes for living cell interfacing and investigations vol.59, 2016, https://doi.org/10.1016/j.msec.2015.10.042
  3. A combined statistical and microscopic analysis of TiO2 nanotubes synthesized under different electrochemical anodizing conditions vol.47, pp.11, 2012, https://doi.org/10.1007/s10853-012-6338-x
  4. A novel experimental method for obtaining multi-layered TiO2 nanotubes through electrochemical anodizing vol.42, pp.12, 2012, https://doi.org/10.1007/s10800-012-0468-3
  5. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells vol.9, pp.1, 2014, https://doi.org/10.1186/1556-276X-9-93
  6. Solar light driven Rhodamine B degradation over highly active β-SiC–TiO2 nanocomposite vol.4, pp.25, 2014, https://doi.org/10.1039/C3RA46578K
  7. Growth control of TiO2nanotubes in different physical environments vol.1, pp.1, 2012, https://doi.org/10.1080/17458080.2012.663507
  8. Y-branched TiO2 nanotube arrays synthesized by anodic oxidation vol.55, pp.1, 2012, https://doi.org/10.1007/s11433-011-4580-x
  9. High-Performance Stable Field Emission with Ultralow Turn on Voltage from rGO Conformal Coated TiO2 Nanotubes 3D Arrays vol.5, pp.1, 2015, https://doi.org/10.1038/srep11612
  10. Facile Fabrication of S-TiO2/β-SiC Nanocomposite Photocatalyst for Hydrogen Evolution under Visible Light Irradiation vol.3, pp.2, 2015, https://doi.org/10.1021/sc500570k
  11. Preparation of precursors of complex titanium and iron oxides using a combined electrode vol.90, pp.4, 2017, https://doi.org/10.1134/S1070427217040115
  12. Effect of Anodizing Potential on the Formation and EIS Characteristics of TiO2 Nanotube Arrays vol.159, pp.4, 2012, https://doi.org/10.1149/2.077204jes