Browse > Article
http://dx.doi.org/10.4191/KCERS.2011.48.2.200

Water-splitting Performance of TiO2 Nanotube Arrays Annealed in NH3 Ambient  

Kim, Se-Im (Department of Information and Nano-Materials Engineering, Kumoh National Institute of Technology)
Kim, Sung-Jin (Department of Information and Nano-Materials Engineering, Kumoh National Institute of Technology)
Yang, Bee-Lyong (Department of Information and Nano-Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Abstract
Increase of surface area and decrease of band gap in $TiO_2$ semiconductors are significant to improve the efficiency of water splitting by photoelectrolysis. In this study $TiO_2$ nanotube arrays with ~7 um length and ~100 nm diameter were fabricated by an anodizing technique of titanium foils using DMSO (dimethyl sulfoxide)-based electrolytes. Then to control the band gap of the $TiO_2$ arrays, they were annealed at $550^{\circ}C$ for up to 180 min in $NH_3$ gas ambient. The samples annealed in $NH_3$ gas for 30 min and 60 min showed superior photo-conversion efficiency for water splitting under white and visible light. A $TiO_2$ nanotube annealed in $NH_3$ gas ambient for a period longer than 120 min showed 1 order higher leakage current. It is believed that the decrease of band gap and increase of conductivity in $TiO_2$ nanotube arrays due to $NH_3$ gas treatments result in the superior water-splitting performance.
Keywords
$TiO_2$; Nanotube; Nitrogen doping; Photocatalysis;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 X. Chen, X. Wang, Y. Hou, J. Huang, L. Wu, and X. Fu, “The Effect of Postnitridation Annealing on the Surface Property and Photocatalytic Performance of N-doped $TiO_2$ Under Visible Light Irradiation,” J. Catalysis, 255 59-67 (2008).   DOI
2 M. Pelaez, A.A. de la Cruz, E. Stathatos, P. Falaras, and D.D. Dionysiou, “Visible Light-activated N-F-codoped $TiO_2$ Nanoparticles for the Photocatalytic Degradation of Microcystin-LR in Water,” Catalysis Today, 144 19-25 (2009).   DOI
3 S. Sakthivel, M. Janczarek, and H. Kisch, “Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped $TiO_2$,” J. Phys. Chem. B, 108 19384-87 (2004).   DOI
4 A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, and N. Serpone, “Review Article Visible-Light-Active Titania Photocatalysts: The Case of N-Doped $TiO_2$-Properties and Some Fundamental Issues,” International Journal of Photoenergy, 23 258394-99 (2008).
5 J.M. Mack, H. Tsuchiya, and P. Schmuki, “High-Aspect-Ratio $TiO_2$ Nanotubes by Anodization of Titanium,” Angew. Chem. Int. Ed., 44 2100-2 (2005).   DOI
6 M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, and C.A. Grimes, “Anodic Growth of Highly Ordered $TiO_2$ Nanotube Arrays to 134 ${\mu}m$ in Length,” J. Phys. Chem. B, 33 110-16 (2006).
7 C. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, “Fabrication of Highly Ordered $TiO_2$ Nanotube Arrays Using an Organic Electrolyte,” J. Phys. Chem. B, 33 109-13 (2005).
8 E. Galvanetto, F.P. Galliano, F. Borgioli, U. Bardi, and A. Lavacchi, “XRD and XPS Study on Reactive Plasma Splayed Titanium-titanium Nitride Coatings,” Thin Solid Films, 384 223-29 (2001).   DOI
9 Kisch, H., Zang, L., Lange, C., Maier, W. F., Antonnius, C., and Meissner, D., “Modified, Amorphous Titania-A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light,” Angew. Chem., Int. Ed., 37 3034-36 (1998).   DOI
10 Zang, L., Lange, C., Abraham, I., Storck, S., Maier, W. F., and Kisch, H., “Amorphous Microporous Titania Modified with Platinum(IV) Chloride - A New Type of Hybrid Photocatalyst for Visible Light Detoxification,” J. Phys. Chem. B, 102 10765-71 (1998).   DOI
11 Anpo, M. and Takeuchi, M., “$TiO_2$ Nanoparticles-Photocatalytic Oxidation ,” Int. J. Photoenergy, 3 1-6 (2001).   DOI
12 J.H. Park, S.W. Kim, and A.J. Bard, “Novel Carbon-Doped $TiO_2$ Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting,” Nano Lett., 1 1-4 (2006).   DOI   ScienceOn
13 R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, and P. Schmuki, “N-Doping of Anodic $TiO_2$ Nanotubes Using Heat Treatment in Ammonia,” Electrochemistry Commun., 8 544-48 (2006).   DOI
14 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, 293 269-71 (2001).   DOI
15 R. Nakamura, T. Tanaka, and Y. Nakato, “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped $TiO_2$ Film Electrodes,” J. Phys. Chem. B, 108 10617-20 (2004).   DOI
16 A. Mills and S.L. Hunte, “An Overview of Semiconductor Photocatalysis,” J. Photochem. Photobiol. A, 108 1-35 (1997).   DOI
17 K. Shankar, K.C. Tep, G.K. Mor, and C.A. Grimes, “An Electrochemical Strategy to Incorporate Nitrogen in Nano-structured $TiO_2$ Thin Films: Modification of Bandgap and Photoelectrochemical Properties,” J. Phys. D: Appl. Phys., 39 2361-66 (2006).   DOI
18 G, Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X. Ma, G. Q. Lu, and H. M. Cheng, “Electron Field Emission of a Nitrogen-doped $TiO_2$ Nanotube Array,” Nanotechnology, 19 025606-12 (2008).   DOI
19 A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 37 238-40 (1972).
20 Cherepy, N. J., Semestad, G. P., Gratzel, M., and Zhang, J. Z., “Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized $TiO_2$,” J. Phys. Chem. B, 101 9432-51 (1997).
21 Kay, A., Humphry-Baker R., and Gratzel, M., “Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline $TiO_2$ Solar Cells by Chlorophyll Derivatives,” J. Phys. Chem., 98 952-959 (1994).   DOI