Browse > Article
http://dx.doi.org/10.4313/TEEM.2010.11.3.112

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation  

Park, Hun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Kim, Ho-Gi (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Choi, Won-Youl (Department of Metal and Materials Engineering, Kangnung-wonju National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.11, no.3, 2010 , pp. 112-115 More about this Journal
Abstract
This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.
Keywords
$TiO_2$; Nanotube; Anodic oxidation; Ordered structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Surf. Interface Anal. 27, 629 (1999) [DOI: 10.1002/(SICI)1096-9918(199907)27:7<629::AIDSIA551>3.0.CO;2-0].   DOI   ScienceOn
2 Q. Y. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res. 20, 230 (2005) [DOI: 10.1557/JMR.2005.0020].
3 M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006) [DOI: 10.1021/jp064020k].   DOI   ScienceOn
4 M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, and C. A. Grimes, J. Phys. Chem. C 111, 14992 (2007) [DOI: 10.1021/jp075258r].   DOI   ScienceOn
5 U. Diebold, Surf. Sci. Rep. 48, 53 (2003) [DOI: 10.1016/S0167-5729(02)00100-0].   DOI   ScienceOn
6 J. H. Kim, S. Lee, and H. S. Im, Appl. Surf. Sci. 151, 6 (1999) [DOI: 10.1016/S0169-4332(99)00269-X].   DOI   ScienceOn
7 Y. Choi, T. Umebayashi, and M. Yoshikawa, J. Mater. Sci. 39, 1837 (2004) [DOI: 10.1023/B:JMSC.0000016198.73153.31].   DOI   ScienceOn
8 H. Park, W. R. Kim, H. T. Jeong, J. J. Lee, H. G. Kim, and W. Y. Choi, Sol. Energy Mater. Sol. Cells in press [DOI: 10.1016/j.solmat.2010.02.017].
9 G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, and C. A. Grimes, J. Mater. Res. 19, 628 (2004) [DOI: 10.1557/JMR.2004.0079].
10 A. Ghicov, H. Tsuchiya, R. Hahn, J. M. Macak, A. G. Munoz, and P. Schmuki, Electrochem. Comm. 8, 528 (2006) [DOI: 10.1016/j.elecom.2006.01.015].   DOI   ScienceOn
11 Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, and H. Xu, J. Am. Chem. Soc. 125, 12384 (2003) [DOI: 10.1021/ja0369461].   DOI   ScienceOn
12 G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, and P. Knauth, Chem. Mater. 21, 63 (2009) [DOI: 10.1021/cm801670u].   DOI   ScienceOn
13 P. Hoyer, Langmuir 12, 1411 (1996) [DOI: 10.1021/la9507803].   DOI   ScienceOn
14 J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, and T. Shimizu, Chem. Mater. 14, 1445 (2002) [DOI: 10.1021/cm011625e].   DOI   ScienceOn
15 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160 (1998) [DOI: 10.1021/la9713816].   DOI   ScienceOn
16 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res. 16, 3331 (2001) [DOI: 10.1557/JMR.2001.0457].   DOI   ScienceOn
17 J. M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005) [DOI: 10.1002/anie.200462459].   DOI   ScienceOn
18 G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006) [DOI: 10.1016/j.solmat.2006.04.007].   DOI   ScienceOn
19 R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Solid-State Lett. 6, B12 (2003) [DOI: 10.1149/1.1545192].   DOI   ScienceOn
20 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006) [DOI: 10.1021/nl052099j].   DOI   ScienceOn
21 H. Park, D. J. Yang, J. S. Yoo, K. S. Mun, W. R. Kim, H. G. Kim, and W. Y. Choi, J. Ceram. Soc. Jpn. 117, 596 (2009) [DOI: 10.2109/jcersj2.117.596].   DOI   ScienceOn
22 H. Park, D. J. Yang, H. G. Kim, S. J. Cho, S. C. Yang, H. Lee, and W. Y. Choi, J. Electroceram. 23, 146 (2009) [DOI: 10.1007/s10832-007-9341-x].   DOI   ScienceOn
23 D.J. Yang, H. Park, S. J. Cho, H. G. Kim, and W. Y. Choi, J. Phys. Chem. Solids 69, 1272 (2008) [DOI: 10.1016/j.jpcs.2007.10.107].   DOI   ScienceOn