• Title/Summary/Keyword: $TiO_2$ nanostructures

Search Result 46, Processing Time 0.03 seconds

Single Nanoparticle Photoluminescence Studies of Visible Light-Sensitive TiO2 and ZnO Nanostructures

  • Yoon, Minjoong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Visible light-sensitive $TiO_2$ and ZnO nanostructure materials have attracted great attention as the promising material for solar energy conversion systems such as photocatalysts for water splitting and environmental purification as well as nano-biosensors. Success of their applications relies on how to control their surface state behaviors related to the exciton dynamics and optoelectronic properties. In this paper, we briefly review some recent works on single nanoparticle photoluminescence (PL) technique and its application to observation of their surface state behaviors which are raveled by the conventional ensemble-averaged spectroscopic techniques. This review provides an opportunity to understand the temporal and spatial heterogeneities within an individual nanostructure, allowing for the potential use of single-nanoparticle approaches in studies of their photoenergy conversion and nano-scale optical biosensing.

Control of Nanospacing in TiO2 Nanowire Array Using Electron Beam Lithography

  • Yun, Young-Shik;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.1-430.1
    • /
    • 2014
  • According to advanced nanotechnology in the field of biomedical engineering, many studies of the interaction between topography of surfaces and cellular responses have been focused on nanostructure. In order to investigate this interaction, it is essential to make well-controlled nanostructures. Electron beam lithography (EBL) have been considered the most typical processes to fabricate and control nano-scale patterns. In this work, $TiO_2$ nanowire array was fabricated with hybrid process (top-down and bottom-up processes). Nanodot arrays were patterned on the substrate by EBL process (top-down). In order to control the spacing between nanodots, we optimized the EBL process using Poly(methyl methacrylate) (PMMA) as an electron beam resist. Metal lift-off was used to transfer the spacing-controlled nanodots as a seed pattern of $TiO_2$ nanowire array. Au or Sn nanodots which play an important role for catalyst using Vapor-Liquid-Solid (VLS) method were patterned on the substrate through the lift-off process. Then, the sample was placed in the tube furnace and heated at the synthesis temperature. After heat treatment, $TiO_2$ nanowire array was fabricated from the nanodots through VLS method (bottom-up). These results of spacing-controlled nanowire arrays will be used to study the interaction between nanostructures and cellular responses in our next steps.

  • PDF

Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

  • Bathla, Aadil;Pal, Bonamali
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.486-496
    • /
    • 2018
  • Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous $TiO_2$ leads to several surface modifications. The bimetallic PNT-3 ($Pd_3@Ni_1/mTiO_2$) exhibited large surface area ($212m^2g^{-1}$), and low recombination rate of the charge carriers ($e^--h^+$). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant $k=5.31{\times}10^{-1}h^{-1}$ owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/$mTiO_2$ interface.

Investigations of Adsorption Behaviors of Various Adsorbents Including Carbon, or TiO2 (탄소나 TiO2를 포함한 다양한 흡착제의 휘발성 유기물 흡착에 대한 연구)

  • Kim, Young-Dok
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • New equipment for quantitative and qualitative adsorption of volatile organic compound was set up, and using this equipment, adsorption behaviors of various carbob-based nanomaterials and $TiO_2$ thin films prepared by atomic layer deposition were compared. We could conclud that $TiO_2$ thin films can show higher adsorption capacity of toluene comparing to the carbon-based nanostructures due to higher affinity of the surface OH groups of $TiO_2$ towards toluene adsorption. We also demonstrate that our method allows to discriminate reversible and irreversible adsorptions at a given temperature.

염료-감응형 태양전지 응용을 위한 Rutile상의 단결정 $TiO_2$ Nanorods의 합성과 특성연구

  • Yang, Hui-Su;Nam, Sang-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.189-189
    • /
    • 2012
  • 염료-감응형 태양전지 응용을 위하여 $TiO_2$ nanorods를 autoclave를 이용하여 FTO 기판위에 수열합성법으로 합성 하였다. $TiO_2$ nanorods는 증류수와 염산, Titanium tetra isopropoxide (TTIP) 전구체의 혼합 용액을 이용하여, $150-200^{\circ}C$의 온도에서 합성하였다. 합성된 $TiO_2$ nanorods의 두께와 길이, 밀도는 성장시간과 성장온도, 전구체의 양, 염산과 증류수의 비율 등의 성자조건 변화를 통하여 조절하였다. $TiO_2$ nanorods의 결정성과 표면형태를 관찰하기 위해 XRD, SEM 그리고 TEM을 이용하였으며, 광학적 특성을 관찰하기 위해서 UV-Vis을 측정하였다. 합성된 $TiO_2$ nanorods 형태는 수직으로 서장된 단결정 구조의 rutile 상으로 관찰되었으며, 길이는 약 $4-6{\mu}m$로 관찰되었다. 고온($200^{\circ}C$)에서 짧은 시간동안 성장시킨 $TiO_2$ nanorods가 태양전지에 응용이 유용한 샘플로 성장되었다. 또한, 반응시간과 전구체의 양이 증가할수록 $TiO_2$ nanorods의 밀도가 증가하였다.

  • PDF

AC Conductivity of $(Sr_{0.75}$,$La_{0.25}$) $TiO_3/SrTiO_3$ Superlattices

  • Choe, Ui-Yeong;Choe, Jae-Du;Lee, Jae-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We have investigated frequency dependant conductivity (or permittivity) of low dimensional oxide structures represented by [($Sr_{0.75}$, $La_{0.25}$)$TiO_3$]$_1$/1$[SrTiO_3]_n$ superlattices. The low dimensional oxide superlattice was made by cumulative stacking of one unit cell thick La doped $SrTiO_3$ and $SrTiO_3$ with variable thickness from 1 to 6 unit cell, i,e, [($Sr_{0.75}$, $La_{0.25}$)$TiO_3$]$_1$/$[SrTiO_3]_n$ (n=1, 2, 3, 4, 5, 6). We found two kinds of relaxation when n is 3 and 4, while, inductance component was observed at n=1. This behavior can be explained by electron modulation in ($Sr_{0.75}$, $La_{0.25}$)$TiO_3/SrTiO_3$ superlattices. When n is 1, electrons by La doping well extend to un-doped layer. Therefore, the transport of superlattices follows bulk-like behavior. On the other hand, as n increased, the doped electrons became two types of carrier: one localized and the other extended. These results in two kinds of transport phase. At further increase of n, most of doped electrons are localized at the doped layer. This result shows that dimensionality of the oxide structure significantly affect the transport of oxide nanostructures.

  • PDF

A Facile Strategy to Fabricate TiO2 Nanostructures with Controllable Crystalline Polymorphs and Morphologies and Their Photoelectrochemical Applications

  • Choe, Min-Gi;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.1-466.1
    • /
    • 2014
  • $TiO_2$는 저렴한 가격, 적절한 bandgap, 열적, 화학적, 생물학적 안정성 등으로 촉망받는 광촉매 물질이다. $TiO_2$는 rutile (tetragonal, space group: P42/mnm), anatse (tetragonal, space group: I41/amd), and brookite (orthorhombic, space group: Pbca )의 3가지 대표적인 결정구조를 가지고 있다. Rutile과 anatase는 1972년 Fujishima와 Honda가 $TiO_2$의 광촉매 특성을 발견 한 후로 아주 많은 연구가 되어왔다. 반면 brookite의 경우는 자연에 거의 존재하지 않으며, 합성방법도 어려워서 rutile과 anatase에 비해 많은 연구가 되지 않았다. 본 연구에서는 brookite를 포함한 다양한 $TiO_2$ 나노구조를 간단한 수열합성법으로 티타늄 호일 위에 합성하였다. 합성된 $TiO_2$는 반응 온도와 시간, additive의 농도에 따라서 sheet, tube, wire, pyramidal 의 4가지 morphologies를 가졌다. 이 다양한 morphologies은 SEM과 TEM으로 분석되었으며, 각 물질의 결정 구조는 XRD분석과 TEM의 SAED pattern 분석으로 sheet, tube, wire은 anatase, pyramidal 구조는 brookite라는 것이 확인 되었다. 위의 방법으로 합성된 각각의 $TiO_2$ 물질들을 working 전극으로, Pt와 Ag/AgCl을 reference와 counter 전극으로 만들어서 photoelectrochemical 특성을 측정해서 비교를 해보았을 때, brookite 물질이 anatase보다 더 좋은 photoelectrochemical 특성을 나타내는 것을 확인하였다.

  • PDF

Principle of Anodic TiO2 Nanotube Formations (양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리)

  • Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.601-606
    • /
    • 2017
  • One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on $TiO_2$ nanotubes have been widely carried out with increasing interests in $TiO_2$, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of $TiO_2$ nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of $TiO_2$ nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of $TiO_2$ nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of $TiO_2$ nanotubes formed through the anodic oxidation in the future.

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes

  • Torres, I. Zamudio;Dominguez, A. Sosa;Bueno, J.J. Perez;Meas, Y.;Lopez, M.L. Mendoza;Dector, A.
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.211-219
    • /
    • 2021
  • The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480℃) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480℃ to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.

Nanostructure of core-shell support for enhanced electrochemical activity in PEMFC (코어-쉘 구조의 지지체를 이용한 성능 향상에 대한 연구)

  • Kim, Doyoung;Han, Sangbeom;Lee, Youngwoo;Kim, Sijin;Park, Kyungwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.93-93
    • /
    • 2011
  • Nanostructures consisting of $TiO_2$ particles as a core and carbon as a shell ($TiO_2$@C) were prepared by heat treatment of $TiO_2$ nanoparticles at high temperature in a methane atmosphere. X-ray diffraction and transmission electron microscopy showed that a carbon shell layer was formed well. These structures were used as supports for platinum nanoparticles and the hybrid particles exhibit improved catalytic activity and stability toward ORR compared to Pt on a carbon black (Vulcan XC-72R). It is likely that enhanced catalytic properties of the Pt on $TiO_2$@C could be due to the stability of the core-shell support in comparison with carbon black support.

  • PDF