Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.3.211

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes  

Torres, I. Zamudio (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.)
Dominguez, A. Sosa (Universidad Autonoma de Queretaro, Facultad de Quimica)
Bueno, J.J. Perez (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.)
Meas, Y. (Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C.)
Lopez, M.L. Mendoza (Tecnologico Nacional de Mexico, Instituto Tecnologico de Queretaro)
Dector, A. (CONACYT, Universidad Tecnologica de San Juan del Rio)
Publication Information
Advances in nano research / v.10, no.3, 2021 , pp. 211-219 More about this Journal
Abstract
The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480℃) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480℃ to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.
Keywords
nano-tubes; photocatalytic material; characterization and application; nano-materials; nanostructured crystals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rauf, A. and Bogaerts, W.F. (2009), "Monitoring of crevice corrosion with the electrochemical frequency modulation technique", Electrochim. Acta, 54, 7357-7363. https://doi.org/10.1016/j.electacta.2009.07.066.   DOI
2 Rauf, A. and Bogaerts, W.F. (2010), "Employing electrochemical frequency modulation for pitting corrosion", Corros. Sci., 52, 2773-2785. https://doi.org/10.1016/j.corsci.2010.04.016.   DOI
3 Saha, J.K., Mitra, P.K., Paul, S. and Singh, D.D.N. (2010), "Performance of different organic coatings on steel substrate by accelerated and in atmospheric exposure tests", Indian J. Chem. Technol., 17, 102-110.
4 Santamaria, M., Conigliaro, G., Di Franco, F., Megna, B. and Di Quarto, F. (2017), "Electronic properties of thermal oxides on Ti and their influence on impedance and photoelectrochemical behavior of TiO2 nanotubes", J. Electrochem. Soc., 164, 113-120. https://doi.org/10.1149/2.0601704jes.   DOI
5 Schlicht, S., Buttner, P. and Bachmann, J. (2019), "Highly active Ir/TiO2 electrodes for the oxygen evolution reaction using atomic layer deposition on ordered porous substrates", ACS Appl. Energy Mater., 2, 2344-2349. https://doi.org/10.1021/acsaem.9b00402.   DOI
6 Shang, F., Chen, S., Liang, J. and Liu, C. (2018), "The photocatalytic properties and mechanistic study of ZnO, Ag multiphase Co-composited TiO2 nanotube arrays film prepared by one-step anodization method", J. Electrochem. Soc., 165, 258-265. https://doi.org/10.1149/2.0251807jes.   DOI
7 Bosch, R.W. and Bogaerts, W.F. (1996), "Instantaneous corrosion rate measurement with small-amplitude potential intermodulation techniques", Corrosion, 52, 204-212. https://doi.org/10.5006/1.3292115.   DOI
8 Sierra-Uribe, H., Cordoba-Tuta, E.M. and Acevedo-Pena, P. (2017), "The effect of the heating rate on anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays", J. Electrochem. Soc., 164, 279-285. https://doi.org/10.1149/2.0241706jes.   DOI
9 Sumi, H., Shimada, H., Yamaguchi, Y. and Yamaguchi, T. (2017), "Effect of anode thickness on polarization resistance for metal-supported microtubular solid oxide fuel cells", J. Electrochem. Soc., 164, 243-247. https://doi.org/10.1149/2.0431704jes.   DOI
10 Supraja, N., Avinash, B. and Prasad, T.N.V.K.V. (2017), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano Res., Int. J., 5(4), 373-392. https://doi.org/10.12989/anr.2017.5.4.373.   DOI
11 Liu, Y., Wan, L., Wang, J., Cheng, L., Chen, R. and Ni, H. (2020), "Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction", Appl. Surf. Sci., 509, 144679. https://doi.org/10.1016/j.apsusc.2019.144679.   DOI
12 Tho, N.T., Thi, C.M., Van Hieu, L. and Van Viet, P. (2020), "Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: A case of black TiO2 nanotube arrays", J. Aust. Ceram. Soc., 56, 849-857. https://doi.org/10.1007/s41779-019-00405-8.   DOI
13 Wang, S., Guan, B.Y., Yu, L. and Lou, X.W.D. (2017), "Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage", Adv. Mater., 29, 1702724. https://doi.org/10.1002/adma.201702724   DOI
14 Jovanovic, T., Milikic, J., Cvjeticanin, N., Stojadinovic, S. and Sljukic, B. (2020), "Performance of Au/Ti and Au/TiO2 nanotube array electrodes for borohydride oxidation and oxygen reduction reaction in alkaline media", Electroanalysis, 32, 1867-1874. https://doi.org/10.1002/elan.202060015.   DOI
15 Kus, E. and Mansfeld, F. (2006), "An evaluation of the electrochemical frequency modulation (EFM) technique", Corros. Sci., 48, 965-979. https://doi.org/10.1016/j.corsci.2005.02.023.   DOI
16 Li, B., Anwer, S., Huang, X., Luo, S., Fu, J. and Liao, K. (2021), "Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage", J. Energy Chem., 55, 202-210. https://doi.org/10.1016/j.jechem.2020.06.074.   DOI
17 Mazare, A., Totea, G., Burnei, C., Schmuki, P., Demetrescu, I. and Ionita, D. (2016), "Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature", Corros. Sci., 103, 215-222. https://doi.org/10.1016/j.corsci.2015.11.021.   DOI
18 McIntyre, P.J. and Mercer, A.D. (2010), "2.34 - corrosion testing and determination of corrosion rates, in: Shreir's corrosion", 1443-1526. http://dx.doi.org/10.1016/B978-044452787-5.00073-1.
19 Noh, K.J., Nam, I. and Han, J.W. (2020), "Nb-TiO2 nanotubes as catalyst supports with high activity and durability for oxygen reduction", Appl. Surf. Sci., 521, 146330. https://doi.org/10.1016/j.apsusc.2020.146330.   DOI
20 Ouyang, W., Teng, F. and Fang, X. (2018), "High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-Induced inner electric fields in the BiOCl nanosheets", Adv. Funct. Mater., 28, 1707178. https://doi.org/10.1002/adfm.201707178.   DOI
21 Dhibar, S., Sahoo, S., Das, C.K. and Singh, R. (2013), "Investigations on copper chloride doped polyaniline composites as efficient electrode materials for supercapacitor applications", J. Mater. Sci. Mater. Electron., 24, 576-585. https://doi.org/10.1007/s10854-012-0800-z.   DOI
22 Bosch, R.W., Hubrecht, J., Bogaerts, W.F. and Syrett, B.C. (2001), "Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring", Corrosion, 57, 60-70. https://doi.org/10.5006/1.3290331.   DOI
23 Patil, D.S., Shaikh, J.S., Dalavi, D.S., Karanjkar, M.M., Devan, R.S., Ma, Y.R. and Patil, P.S. (2011), "An Mn doped polyaniline electrode for electrochemical supercapacitor", J. Electrochem. Soc., 158, 653-657. https://doi.org/10.1149/1.3561428.   DOI
24 Paul, S., Pattanayak, A. and Guchhait, S.K. (2014), "Corrosion behavior of carbon steel in synthetically produced oil field seawater", Int. J. Met., 2014, 1-11. https://doi.org/10.1155/2014/628505.   DOI
25 Gu, S., Marianov, A.N., Zhu, Y. and Jiang, Y. (2021), "Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution", J. Energy Chem., 55, 219-227. https://doi.org/10.1016/j.jechem.2020.06.067.   DOI
26 Jayaraman, S., Rajarathnam, D. and Srinivasan, M.P. (2010), "Formation of polythiophene multilayers on solid surfaces by covalent molecular assembly", Mater. Sci. Eng. B, 168, 45-54. https://doi.org/10.1016/j.mseb.2010.01.052.   DOI
27 Chang, Y.J., Lee, J.W., Chen, H.P., Liu, L.S. and Weng, G.J. (2011), "Photocatalytic characteristics of TiO2 nanotubes with different microstructures prepared under different pulse anodizations", Thin Solid Films, 519, 3334-3339. https://doi.org/10.1016/j.tsf.2010.12.155.   DOI
28 Chen, J., Dai, S., Liu, L., Maitz, M.F., Liao, Y., Cui, J., Zhao, A., Yang, P., Huang, N. and Wang, Y. (2021), "Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility", Bioact. Mater., 6, 45-54. https://doi.org/10.1016/j.bioactmat.2020.07.009.   DOI
29 Fouda, A.S. and Wahed, H.A.A. (2011), "Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives", Arab. J. Chem., 9, 591-599. https://doi.org/10.1016/j.arabjc.2011.02.014.   DOI
30 Fraoucene, H., Hatem, D., Vacandio, F. and Pasquinelli, M. (2019), "TiO2 nanotubes with nanograss structure: The effect of the anodizing voltage on the formation mechanism and structure properties", J. Electron. Mater., 48, 2046-2054. https://doi.org/10.1007/s11664-019-06951-y.   DOI
31 Ge, M., Li, Q., Cao, C., Huang, J., Li, S., Zhang, S., Chen, Z., Zhang, K., Al-Deyab, S.S. and Lai, Y. (2017), "One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting", Adv. Sci., 4, 1600152. https://doi.org/10.1002/advs.201600152.   DOI
32 Wang, S., Zhang, Z., Huo, W., Zhang, X., Fang, F., Xie, Z. and Jiang, J. (2021), "Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI)", Chem. Eng. J., 403, 126331. https://doi.org/10.1016/j.cej.2020.126331.   DOI
33 Al-Mobarak, N.A., Khaled, K.F., Hamed, M.N.H. and Abdel-Azim, K.M. (2011), "Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions", Arab. J. Chem., 4, 185-193. https://doi.org/10.1016/j.arabjc.2010.06.036.   DOI
34 Bolat, G., Izquierdo, J., Gloriant, T., Chelariu, R., Mareci, D. and Souto, R.M. (2015), "Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions", Corros. Sci., 98, 170-179. https://doi.org/10.1016/j.corsci.2015.05.025.   DOI
35 Genova-Koleva, R.V., Alcaide, F., A lvarez, G., Cabot, P.L., Grande, H.J., Martinez-Huerta, M.V. and Miguel, O. (2019), "Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction", J. Energy Chem., 34, 227-239. https://doi.org/10.1016/j.jechem.2019.03.008.   DOI
36 Xu, L., Niu, J., Xie, H., Ma, X., Zhu, Y. and Crittenden, J. (2021), "Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode", J. Hazard. Mater., 402, 123530. https://doi.org/10.1016/j.jhazmat.2020.123530.   DOI
37 Zhao, C., Yu, C., Zhang, M., Huang, H., Li, S., Han, X., Liu, Z., Yang, J., Xiao, W., Liang, J., Sun, X. and Qiu, J. (2017), "Ultrafine MoO2-Carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance", Adv. Energy Mater., 7, 1602880. https://doi.org/10.1002/aenm.201602880.   DOI
38 Yoriya, S., Paulose, M., Varghese, O.K., Mor, G.K. and Grimes, C.A. (2007), "Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes", J. Phys. Chem. C, 111, 13770-13776. https://doi.org/10.1021/jp074655z.   DOI
39 Zamudio Torres, I., Perez Bueno, J.D.J., Torres Lopez, C.Y., Lartundo Rojas, L., Mendoza Lopez, M.L. and Vong, Y.M. (2016a), "A phenomenon of degradation of methyl orange observed during the reaction of NH4TiOF3 nanotubes with the aqueous medium to produce TiO2 anatase nanoparticles", RSC Adv., 6, 76167-76173. https://doi.org/10.1039/C6RA15149C.   DOI
40 Zamudio Torres, I., Perez Bueno, J.D.J., Torres Lopez, C.Y., Lartundo Rojas, L., Mendoza Lopez, M.L. and Vong, Y.M. (2016b), "Nanotubes with anatase nanoparticulate walls obtained from NH4TiOF3 nanotubes prepared by anodizing Ti", RSC Adv., 6, 41637-41643. https://doi.org/10.1039/C6RA05738A.   DOI
41 Zhou, X., Liu, N. and Schmuki, P. (2017), "Photocatalysis with TiO2 nanotubes: 'Colorful' reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes", ACS Catal., 7, 3210-3235. https://doi.org/10.1021/acscatal.6b03709.   DOI