DOI QR코드

DOI QR Code

Single Nanoparticle Photoluminescence Studies of Visible Light-Sensitive TiO2 and ZnO Nanostructures

  • Yoon, Minjoong (Molecular/Nano Photochemistry & Photonics Lab, Department of Chemistry, Chungnam National University)
  • Received : 2013.03.08
  • Accepted : 2013.04.15
  • Published : 2013.03.01

Abstract

Visible light-sensitive $TiO_2$ and ZnO nanostructure materials have attracted great attention as the promising material for solar energy conversion systems such as photocatalysts for water splitting and environmental purification as well as nano-biosensors. Success of their applications relies on how to control their surface state behaviors related to the exciton dynamics and optoelectronic properties. In this paper, we briefly review some recent works on single nanoparticle photoluminescence (PL) technique and its application to observation of their surface state behaviors which are raveled by the conventional ensemble-averaged spectroscopic techniques. This review provides an opportunity to understand the temporal and spatial heterogeneities within an individual nanostructure, allowing for the potential use of single-nanoparticle approaches in studies of their photoenergy conversion and nano-scale optical biosensing.

Keywords

References

  1. Fujishima, A.; Rao, T.N.; Tryk, D.A. J. Photochem. Photobiol. C, 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  2. Li, Q.; Xie, R. C.; Li, Y. W.; Mintz, E. A.; Shang, J. K. Environ. Sci. Technol., 2007, 41, 5050. https://doi.org/10.1021/es062753c
  3. Chen, X.; Mao, S.S. Chem.Rev.,2007,107, 2891. https://doi.org/10.1021/cr0500535
  4. Yoon, M.; Chang, J. A.; Kim, Y.; Choi, J. R.; Kim, K.; Lee, S. J. J. Phys. Chem. B, 2001, 105, 2539. https://doi.org/10.1021/jp003736r
  5. Khan, S.; Al‐Shahry, M.; Ingler, W. Science, 2002, 297, 2243. https://doi.org/10.1126/science.1075035
  6. Li, Z.; Yang, R.; Yu, M.; Bai, F.; Li, C.; Wang, Z. L. J. Phys. Chem. C 2008,112,20114. https://doi.org/10.1021/jp808878p
  7. Liu, J.; Guo, C.; Li, C. M.; Li, Y.; Chi, Q.; Huang, X.; Liao, L.; Yu, T. Electrochem. Commun. 2009, 11, 202. https://doi.org/10.1016/j.elecom.2008.11.009
  8. Chen, W. in Handbook of Nanostructured Materials and Nano‐technology, ed. H. S. Nalwa, Academic Press, New York, USA, 2000, vol. 4 Chapter 5.
  9. Wang, Y.; Herron, N. J. Phys. Chem., 1991, 95, 525. https://doi.org/10.1021/j100155a009
  10. Zhang, X.; Yin, L.; Tang, M.; Pu, Y. J. Nanosci. Nanotechnol. 2010, 10, 8.
  11. Suttiponparnit, K.; Jiang, J.; Sahu, M. Suvachittanonat, S.; Charunpanitkul, T.; Biswas, P. Nanoscale Res. Lett. 2011, 6. 27.
  12. Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa, S. Chem. Lett., 2000, 942. .
  13. Chen, Q.; Du, G. H.; Zhang, S.; Peng, L.‐M. Acta Crystallogr., Sect. B, 2002, 58, 587. https://doi.org/10.1107/S0108768102009084
  14. Jang, J. H.; Jeon, K. S.; Park, T. S.; Lee, K. W.; Yoon, M. J. Chin. Chem. Soc., 2006, 53, 123.
  15. Yoon, M.; Seo, M.; Jeong, C.; Jang, J. H.; Jeon, K. S. Chem. Mater., 2005, 17, 6069. https://doi.org/10.1021/cm0515855
  16. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M. Chem. Lett., 1997, 735.
  17. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M. J. Phys. Chem. B, 1999, 103, 3120. https://doi.org/10.1021/jp984162h
  18. Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.; Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B, 2004, 108, 3817.
  19. Amtout, A.; Leoneli, R. Solid State Commun., 1992, 84, 349. https://doi.org/10.1016/0038-1098(92)90135-V
  20. Fujihara, K.; Izumi, S.; Ohno, T.; Matsumura, M. J. Photochem. Photobiol., A, 2000, 132, 99. https://doi.org/10.1016/S1010-6030(00)00204-5
  21. Hussels, M.; Konrad, A.; Brecht, M. Rev. Scientific Instrumenents 2012, 83, 123706/1.
  22. Lebold, T.; Michaelis, J.; Bein, T.; Braeuchle, C. In Characteriza‐tion of Solid Materials and Heterogeneous Catalysts (Ed. by Che, M.; Vedrine, J. C.) 2012,1,585‐607.
  23. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature, 1996, 383, 802. https://doi.org/10.1038/383802a0
  24. Neuhauser, R. G.; Shimizu, K. T.; Woo, W. K.; Empedocles, S. A. Bawendi, M. G. Phys. Rev. Lett., 2000, 85, 3301. https://doi.org/10.1103/PhysRevLett.85.3301
  25. Sugishaki, M.; Ren, H.‐W.; Nishi, K.; Masumoto, Y. Phys. Rev. Lett., 2001, 86, 4883. https://doi.org/10.1103/PhysRevLett.86.4883
  26. Fisher, B. R.; Eisler, H.‐J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B, 2004, 108, 143. https://doi.org/10.1021/jp035756+
  27. Osad'ko, I. S. Chem. Phys., 2005, 316, 99. https://doi.org/10.1016/j.chemphys.2005.04.044
  28. Wang, X. Y.; Ma, W. Q.; Zhang, J. Y.; Salamo, G. J.; Xiao, M.; Shih, C. K. Nano Lett., 2005, 5, 1873. https://doi.org/10.1021/nl051026x
  29. Nakkiran, A.; Thirumalai, J.; Jagannathan, R. Chem. Phys. Lett., 2007, 436, 155. https://doi.org/10.1016/j.cplett.2007.01.009
  30. Efros, A. L.; Rosen, M. Phys. Rev. Lett., 1997, 78, 1110. https://doi.org/10.1103/PhysRevLett.78.1110
  31. Link, B. S.; Mohamed, M.; El‐Sayed, M. J. Phys. Chem. B, 2001, 105, 12286. https://doi.org/10.1021/jp0124589
  32. Shim, M.; Wang, C.; Guyot‐Sionnest, P. J. Phys. Chem. B, 2001, 105, 2369.
  33. Kuno, M.; Fromm, D. P.; Johnson, S. T.; Gallagher, A.; Nesbitt, D. J. Phys. Rev. B, 2003, 67, 125304. https://doi.org/10.1103/PhysRevB.67.125304
  34. Shimizu, K. T.; Neuhauser, R. G.; Leatherdale, C. A.; Empedocles, S. A.; Woo, W. K.; Bawendi, M. G. Phys. Rev. B, 2001, 63, 205316. https://doi.org/10.1103/PhysRevB.63.205316
  35. Tang, J.; Marcus, R. A. J. Chem. Phys., 2005, 123, 054704. https://doi.org/10.1063/1.1993567
  36. Margolin, G.; Barkai, E. J. Chem. Phys., 2004, 121, 1566. https://doi.org/10.1063/1.1763136
  37. Frantsuzov, P. A.; Marcus, R. A. Phys. Rev. B, 2005, 72, 155321. https://doi.org/10.1103/PhysRevB.72.155321
  38. Pelton, M.; Smith, G.; Scherer, N. F.; Marcus, R. A. Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14249. https://doi.org/10.1073/pnas.0706164104
  39. Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A. Nano Lett., 2007, 7, 3290. https://doi.org/10.1021/nl0714583
  40. Glennon, J. J.; Buhro, W. E.; Loomis, R. A. J. Phys. Chem. C, 2008, 112, 4813. https://doi.org/10.1021/jp710067b
  41. Kim, H.‐H.; Song, N. W.; Park, T. S.; Yoon, M. Chem. Phys. Lett., 2006, 432, 200. https://doi.org/10.1016/j.cplett.2006.10.049
  42. Gensch, T.; Bohmer, M.; Armendia, P. F. J. Phys. Chem. A, 2005, 109, 6653.
  43. Jeon, K.‐S.; Oh, S.‐D.; Suh, Y. D.; Yoshikawa, H.; Masuhara, H.; Yoon, M. Phys. Chem. Chem. Phys., 2009, 11, 534‐542
  44. Jang, J. H.; Jeon, K.‐S.; Oh, S.; Kim, H.‐J.; Asahi, T.; Masuhara, H.; Yoon, M. Chem. Mater., 2007, 19, 1984. https://doi.org/10.1021/cm0629863
  45. Hosono, H. Chem. Lett. 1997,523.
  46. Kind, H.; Yan, H.; Law, M.; Messer, B.; Yang, P. Adv. Mater. 2002, 14, 158. https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  47. Law, M.; Kind, H.; Kim, F.; Messer, B.; Yang, P. Angew. Chem. 2002, 41, 24505.
  48. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T. Appl. Phys. Lett. 1997, 70, 2230. https://doi.org/10.1063/1.118824
  49. Pan, Z.W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. https://doi.org/10.1126/science.1058120
  50. Johnson, J. C.; Yan, H.; Yang, P.; Saykally, R. J. J. Phys. Chem. B 2003,107, 8816. https://doi.org/10.1021/jp034482n
  51. Lee, J.; Yoon, M. J. Phys. Chem. C 2009, 113, 11952. https://doi.org/10.1021/jp903167x
  52. Lee, J.; Choi, S.; Bae, S. J.; Yoon, S. M.; Choi, J. S.; Yoon, M. 2013, Submitted.

Cited by

  1. Structural and photophysical studies of few layers of reduced graphene oxide functionalized with Sn(IV) tetrakis (4-pyridyl)porphyrin dichloride vol.221, 2016, https://doi.org/10.1016/j.synthmet.2016.09.016