DOI QR코드

DOI QR Code

Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

  • Bathla, Aadil (School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology) ;
  • Pal, Bonamali (School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology)
  • Received : 2018.05.15
  • Accepted : 2018.07.19
  • Published : 2018.11.25

Abstract

Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous $TiO_2$ leads to several surface modifications. The bimetallic PNT-3 ($Pd_3@Ni_1/mTiO_2$) exhibited large surface area ($212m^2g^{-1}$), and low recombination rate of the charge carriers ($e^--h^+$). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant $k=5.31{\times}10^{-1}h^{-1}$ owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/$mTiO_2$ interface.

Keywords

Acknowledgement

Supported by : DST-India (Department of Science and Technology)

References

  1. A.-G. Boudjahem, A. Redjel, T. Mokrane, J. Ind. Eng. Chem. 18 (2012) 303. https://doi.org/10.1016/j.jiec.2011.11.038
  2. B. Li, G.-S. Hu, L.-Y. Jin, X. Hong, J.-Q. Lu, M.-F. Luo, J. Ind. Eng. Chem. 19 (2013) 250. https://doi.org/10.1016/j.jiec.2012.08.008
  3. H.-y. Jiang, S.-s. Zhang, B. Sun, Catal. Lett. 148 (2018) 1336. https://doi.org/10.1007/s10562-018-2361-0
  4. R.L. Oliveira, C.S. Oliveira, R. Landers, C.R. Correia, ChemistrySelect 3 (2018) 535. https://doi.org/10.1002/slct.201702693
  5. Y. Ping, J. Zhang, T. Xing, G. Chen, R. Tao, K.-H. Choo, J. Ind. Eng. Chem. 58 (2018) 74. https://doi.org/10.1016/j.jiec.2017.09.009
  6. S. Kang, K.S. Yoo, Y. Chung, Y. Kwon, J. Ind. Eng. Chem. 62 (2018) 329. https://doi.org/10.1016/j.jiec.2018.01.011
  7. Q. Wu, C. Zhang, B. Zhang, X. Li, Z. Ying, T. Liu, W. Lin, Y. Yu, H. Cheng, F. Zhao, J. Colloid Interface Sci. 463 (2016) 75. https://doi.org/10.1016/j.jcis.2015.10.026
  8. J. Xia, G. He, L. Zhang, X. Sun, X. Wang, Appl. Catal. B 180 (2016) 408. https://doi.org/10.1016/j.apcatb.2015.06.043
  9. A. Bathla, B. Pal, ChemistrySelect 3 (2018) 4738. https://doi.org/10.1002/slct.201800699
  10. L. Liu, F. Gao, P. Concepcion, A. Corma, J. Catal. 350 (2017) 218. https://doi.org/10.1016/j.jcat.2017.03.014
  11. S. Rana, S.B. Jonnalagadda, RSC Adv. 7 (2017) 2869. https://doi.org/10.1039/C6RA26443C
  12. P. Natarajan, H.A. Khan, S. Yoon, K.-D. Jung, J. Ind. Eng. Chem. 63 (2018) 380. https://doi.org/10.1016/j.jiec.2018.02.038
  13. S. Cattaneo, S.J. Freakley, D.J. Morgan, M. Sankar, N. Dimitratos, G.J. Hutchings, Catal. Sci. Technol. 8 (2018) 1677. https://doi.org/10.1039/C7CY02556D
  14. A. Monga, A. Bathla, B. Pal, Sol. Energy 155 (2017) 1403. https://doi.org/10.1016/j.solener.2017.07.084
  15. A. Monga, R.A. Rather, B. Pal, Sol. Energy Mater. Sol. Cells 172 (2017) 285. https://doi.org/10.1016/j.solmat.2017.08.002
  16. L. Rout, A. Kumar, R.S. Dhaka, G.N. Reddy, S. Giri, P. Dash, Appl. Catal. A 538 (2017) 107. https://doi.org/10.1016/j.apcata.2017.03.017
  17. C.-H. Liu, R.-H. Liu, Q.-J. Sun, J.-B. Chang, X. Gao, Y. Liu, S.-T. Lee, Z.-H. Kang, S.-D. Wang, Nanoscale 7 (2015) 6356. https://doi.org/10.1039/C4NR06855F
  18. A. Monga, B. Pal, Colloids Surf. A 481 (2015) 158. https://doi.org/10.1016/j.colsurfa.2015.04.051
  19. Y. Chen, H. Lim, Q. Tang, Y. Gao, T. Sun, Q. Yan, Y. Yang, Appl. Catal. A 380 (2010) 55. https://doi.org/10.1016/j.apcata.2010.03.026
  20. T. Jayesh, K. Itika, G.R. Babu, K.R. Rao, R. Keri, A.H. Jadhav, B. Nagaraja, Catal. Commun. 106 (2018) 73. https://doi.org/10.1016/j.catcom.2017.12.016
  21. M. Glatz, B. Stoger, D. Himmelbauer, L.F. Veiros, K. Kirchner, ACS Catal. 8 (2018) 4009. https://doi.org/10.1021/acscatal.8b00153
  22. M. Han, H. Zhang, Y. Du, P. Yang, Z. Deng, React. Kinet. Mech. Catal. 102 (2010) 393.
  23. R.M. Mironenko, O.B. Belskaya, T.I. Gulyaeva, M.V. Trenikhin, A.I. Nizovskii, A.V. Kalinkin, V.I. Bukhtiyarov, A.V. Lavrenov, V.A. Likholobov, Catal. Today 279 (2017) 2. https://doi.org/10.1016/j.cattod.2016.07.022
  24. X. Jiang, N. Koizumi, X. Guo, C. Song, Appl. Catal. B 170 (2015) 173.
  25. S. Fu, C. Zhu, Q. Shi, H. Xia, D. Du, Y. Lin, Nanoscale 8 (2016) 5076. https://doi.org/10.1039/C5NR07682J
  26. X. Fu, Y. Liu, W. Yao, Z. Wu, Catal. Commun. 83 (2016) 22. https://doi.org/10.1016/j.catcom.2016.05.001
  27. L. Luo, Z. Duan, H. Li, J. Kim, G. Henkelman, R.M. Crooks, J. Am. Chem. Soc. 139 (2017) 5538. https://doi.org/10.1021/jacs.7b01653
  28. J. Zhang, K. Gao, S. Wang, W. Li, Y. Han, RSC Adv. 7 (2017) 6447. https://doi.org/10.1039/C6RA26142F
  29. C.-H. Hao, X.-N. Guo, Y.-T. Pan, S. Chen, Z.-F. Jiao, H. Yang, X.-Y. Guo, J. Am. Chem. Soc. 138 (2016) 9361. https://doi.org/10.1021/jacs.6b04175
  30. L. Fu, W. Cai, A. Wang, Y. Zheng, Mater. Lett. 142 (2015) 201. https://doi.org/10.1016/j.matlet.2014.12.021
  31. P. Sharma, Y. Sasson, Green Chem. 19 (2017) 844. https://doi.org/10.1039/C6GC02949C
  32. R.A. Rather, S. Singh, B. Pal, Appl. Catal. B 213 (2017) 9. https://doi.org/10.1016/j.apcatb.2017.05.002
  33. R.A. Rather, S. Singh, B. Pal, J. Catal. 346 (2017) 1. https://doi.org/10.1016/j.jcat.2016.11.021
  34. J. Archana, S. Harish, M. Sabarinathan, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, M. Shimomura, H. Ikeda, D. Aswal, Y. Hayakawa, RSC Adv. 6 (2016) 68092. https://doi.org/10.1039/C6RA14976F
  35. Z.-Q. Li, Y.-P. Que, L.-E. Mo, W.-C. Chen, Y. Ding, Y.-M. Ma, L. Jiang, L.-H. Hu, S.-Y. Dai, ACS Appl. Mater. Interfaces 7 (2015) 10928. https://doi.org/10.1021/acsami.5b02195
  36. T. Sreethawong, S. Yoshikawa, Catal. Commun. 6 (2005) 661. https://doi.org/10.1016/j.catcom.2005.06.004
  37. Y. Liu, Z. Wang, W. Fan, Z. Geng, L. Feng, Ceram. Int. 40 (2014) 3887. https://doi.org/10.1016/j.ceramint.2013.08.030
  38. N. Zhang, S. Liu, X. Fu, Y.-J. Xu, J. Phys. Chem. C 115 (2011) 9136. https://doi.org/10.1021/jp2009989
  39. J. Kaur, R. Singh, B. Pal, J. Mol. Catal. A 397 (2015) 99. https://doi.org/10.1016/j.molcata.2014.11.007
  40. J. Prakash, P. Kumar, R. Harris, C. Swart, J. Neethling, A.J. van Vuuren, H. Swart, Nanotechnology 27 (2016) 355707. https://doi.org/10.1088/0957-4484/27/35/355707
  41. D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, J. Phys. Chem. C 121 (2017) 9011. https://doi.org/10.1021/acs.jpcc.7b00321
  42. S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 9 (2016) 3314. https://doi.org/10.1039/C6EE02002J
  43. C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, CrystEngComm 14 (2012) 3989. https://doi.org/10.1039/c2ce25161b
  44. A.L. Luna, D. Dragoe, K. Wang, P. Beaunier, E. Kowalska, B. Ohtani, D. Bahena Uribe, M.A. Valenzuela, H. Remita, C. Colbeau-Justin, J. Phys. Chem. C 121 (2017) 14302. https://doi.org/10.1021/acs.jpcc.7b01167
  45. N. Chen, D. Deng, Y. Li, X. Liu, X. Xing, X. Xiao, Y. Wang, Sci. Rep. 7 (2017) 7692. https://doi.org/10.1038/s41598-017-08074-y
  46. R.A. Rather, D. Pooja, P. Kumar, S. Singh, B. Pal, J. Clean. Prod. 175 (2018) 394. https://doi.org/10.1016/j.jclepro.2017.12.083
  47. N. Perret, F. Cardenas-Lizana, M.A. Keane, Catal. Commun. 16 (2011) 159. https://doi.org/10.1016/j.catcom.2011.09.017
  48. S. Flores, O. Rios-Bernij, M. Valenzuela, I. Cordova, R. Gomez, R. Gutierrez, Top. Catal. 44 (2007) 507. https://doi.org/10.1007/s11244-006-0098-2
  49. S. Singh, R. Prajapat, R.A. Rather, B. Pal, Arab. J. Chem. (2018), doi:http://dx.doi.org/10.1016/j.arabjc.2018.04.002 (in press).
  50. W.G. Menezes, B. Neumann, V. Zielasek, K. Thiel, M. Baumer, ChemPhysChem 14 (2013) 1577. https://doi.org/10.1002/cphc.201201100

Cited by

  1. Catalytic Investigation of Ag Nanostructures Loaded on Porous Hematite Cubes: Infiltrated versus Exteriors vol.4, pp.17, 2018, https://doi.org/10.1002/slct.201900326
  2. Recent progress in bimetallic nanostructure impregnated metal-organic framework for photodegradation of organic pollutants vol.24, pp.None, 2018, https://doi.org/10.1016/j.apmt.2021.101105