• 제목/요약/키워드: $TiO_2$ additive

검색결과 156건 처리시간 0.03초

Influence of the MgO-TiO2 Co-Additive Content on the Phase Formation, Microstructure and Fracture Toughness of MgO-TiO2-Reinforced Dental Porcelain Nanocomposites

  • Waiwong, Ranida;Ananta, Supon;Pisitanusorn, Attavit
    • 한국세라믹학회지
    • /
    • 제54권2호
    • /
    • pp.141-149
    • /
    • 2017
  • The influence of the co-additive concentration (0 - 45 wt% with an interval of 5 wt%) of MgO-$TiO_2$ on the phase formation, microstructure and fracture toughness of MgO-$TiO_2$-reinforced dental porcelain nanocomposites derived from a one-step sintering technique were examined using a combination of X-ray diffraction, scanning electron microscopy and Vickers indentation. It was found that MgO-$TiO_2$-reinforced dental porcelain nanocomposites exhibited significantly higher fracture toughness values than those observed in single-additive (MgO or $TiO_2$)-reinforced dental porcelain composites at any given sintering temperature. The amount of MgO-$TiO_2$ as a co-additive was found to be one of the key factors controlling the phase formation, microstructure and fracture toughness of these nanocomposites. It is likely that 30 wt% of MgO-$TiO_2$ as a co-additive is the optimal amount for $MgTi_2O_5$ and $Mg_2SiO_4$ crystalline phase formation to obtain the maximum relative density (96.80%) and fracture toughness ($2.60{\pm}0.07MPa{\cdot}m^{1/2}$) at a sintering temperature of $1000^{\circ}C$.

TiO2 Paste에 PEG 첨가에 따른 DSSC의 효율 특성 (DSSCs Efficiencies of PEG Additive In TiO2 Paste)

  • 권성열;양욱;장자항
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.746-752
    • /
    • 2014
  • Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.

Pb($Zn_{1/3}Nb_{2/3}O_3-PbTiO_3-BaTiO_3$) System의 미세구조와 전기적 물성에 관한 연구 (A Study on Microstructure and Electrical Properties in Pb($Zn_{1/3}Nb_{2/3}O_3-PbTiO_3-BaTiO_3$ System)

  • 이응상;이정우
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.675-680
    • /
    • 1992
  • The purpose of this investigation was to study the stability of perovskite structure, the variation of electrical properties and a microstructure with varing amount of PbTiO3 additive in PZN-PT-BT system. The results are as follows: 1. The pyrochlore phase was reduced as the amount of PbTiO3 additive was increased and completely eliminated at 0.15PT in PZN-PT-BT system. 2. The aging rate was increased in proportion to tetragonality because the internal stress was increased in proportion to tetragonality. 3. On increasing the amount of PbTiO3 additive, the Curie temperature was increased in proportion to tetragonality. 4. As the amount of PT in the composition increase, the variation of dielectric constant was sharpened and the diffuseness of the transition decreased.

  • PDF

다공성 $ZrTiO_4$ 재료의 제조 및 특성 (Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material)

  • 허근;명성재;이용현;전명표;조정호;김병익;심광보
    • 한국결정성장학회지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2008
  • 코디어라이트는 낮은 열팽창계수를 가지나, 디젤 배기가스 담체로써 사용하기에는 기계적 강도가 낮고, 황에 대한 내산성이 취약한 문제를 가지고 있다. 본 연구에서는 $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3$$Nb_2O_5$가 첨가된 $ZrTiO_4$의 물성을 XRD, SEM, UTM 및 열팽창계수 측정 장치를 사용하여 측정하고 분석하였다. $ZrTiO_4$$TiO_2$$ZrO_2$를 출발원료로 볼빌에서 혼합한 후 $1240^{\circ}C$ 이상의 온도에서 3시간 하소함으로써 monoclinic 구조로 합성되었다. 꺽임강도 및 열팽창계수 측정용 시편은 $ZrTiO_4$와 첨가제를 혼합 성형하고, $1300^{\circ}C$에서 3 시간 소성함으로써 얻어졌다. 소결된 시편의 기공율은 첨가제의 함량이 5%로 증가함에 따라 첨가제의 종류에 관계없이 감소하였으나, 첨가제의 함량이 10% 로 증가하면 기공율은 포화되었다. 꺾임강도는 $Al_2O_3$를 5, 10 wt% 첨가 시 큰 폭으로 증가하였으나, 나머지 첨가제에 대해서는 꺾임강도가 감소하였다. $ZrTiO_4$의 열팽창계수 $(1000^{\circ}C)$$Nb_2O_5$를 제외하고는 첨가제가 증가할수록 계속적으로 감소하였으며, 특히, $SiO_2$가 첨가된 경우 가장 낮은 열팽창계수를 나타내었다.

Bending Strength of Crack Healed $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal

  • 박승원;김미경;안석환;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.166-168
    • /
    • 2006
  • $Si_3N_4/SiC$ composite ceramics was sintered in order to investigate their bending strength behavior after crack healing. $Y_2O_$ and $TiO_2$ power was added as sintering additives to enhance it's sintering property. A three-point bending specimen was cut out from sintered plates. About $100\;{\mu}m$ semi-circular surface cracks were made on the center of the tension surface of the three-point bending specimen using Vickers indenter. After the crack-healing processing from $500^{\circ}C$ to $1300^{\circ}C$, for 1 h, in air, the bending strength behavior of these crack-healed specimen coated with $SiO_2$ colloidal were determined systematically at room temperature. $Si_3N_4/SiC$ ceramics using additive powder ($Y_2O_3+TiO_2$) was superior to that of additive powder $Y_2O_3$. The additive powder $TiO_2$ exerted influence at growth of $Si_3N_4$. The optimum crack healing conditions coated $SiO_2$ colloidal were $1000^{\circ}C$ at $Si_3N_4/SiC$ using additive powder ($Y_2O_3+TiO_2$), and $1300^{\circ}C$ at $Si_3N_4/SiC$ using additive powder $Y_2O_3$.

  • PDF

BaTiO$_3$ 세라믹스의 전기저항에 미치는 첨가제와 냉각속도의 영향(I) - TiO$_2$, SiO$_2$ 및 Al2O$_3$ 단미첨가 - (Effect of Additives and Cooling Rates on the Electrical Resistivity of BaTiO3 Ceramics (I))

  • 염희남;하명수;이재춘;정윤중
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.661-666
    • /
    • 1991
  • Microstructure, room temperature resistivity and temperature coefficient of resistance of BaTiO3 ceramics were studied by varying cooling rates and additives such as TiO2, SiO2 and Al2O3. The basic composition of the BaTiO3 ceramics was formed by adding 0.25 mol% Dy2O3 and 0.07 mol% MnO2 to the BaTiO3 composition. Unlike the additives of SiO2 and Al2O3, an addition of 2 mol% TiO2 to the basic composition was effective to control the grain size of the fired specimens. The room temperature resistivity and the temperature coefficient of resistance for the specimen of this particular compostion were measured as about 102 ohm.cm and 16.5%/$^{\circ}C$, respectively. The observed grain boundary phase of the sample with Al2O3 additive was BaTi3O7, while that of the samples with SiO2 additive was confirmed as BaTiSiO5.

  • PDF

졸 코팅 법을 이용한 BaTiO3 분체의 첨가제 코팅 II - Mg, Ca, Mn 이 첨가된 BaTiO3 졸을 이용한 첨가제 코팅 공정 (Additive Coating of BaTiO3 Powder using Sol Coating Method II - Additive Coating Process using BaTiO3 Sol Added by Mg, Ca, Mn)

  • 신효순
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.960-966
    • /
    • 2004
  • On the bases of the results from "Additive Coating of BaTiO$_3$ Powder using Sol Coating Method I", experimental condition was defined. Representative additives for BaTiO$_3$, that is to say, Mg, Ca and Mn were experimented. The sources of the metal ion were used by organometal complex. As added it, the stability of BaTiO$_3$ sol was evaluated. Mg and Ca were stable, however, The solubility limit of Mn-ATH was 0.05 mol ratio in Mn-ATH/sol. The solubility limit of Mg ion in BaTiO$_3$ was lower than 2 mol%. From the x Ray diffraction patterns, lattice parameters were different with temperature and additives, because the solubility of metal ion was varied in BaTiO$_3$. The dielectric constant of BaTiO$_3$ powders which coated with the 1.5 mol% Mg and calcined at 1200$^{\circ}C$ was increased with 20%.

Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성 (Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process)

  • 이종호;이영기;김영직;오한준
    • 한국재료학회지
    • /
    • 제31권10호
    • /
    • pp.552-561
    • /
    • 2021
  • For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

ZnO 세라믹 바리스터의 미세구조에 미치는 $TiO_2$의 영향 (Influence of $TiO_2$ Addition on Microstructure of ZnO Ceramic Varistor)

  • 소병문;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제11권3호
    • /
    • pp.214-220
    • /
    • 1998
  • ZnO varistors are characterized by the features of excellent nonlinearity and surge withstand capability. In this paper, in order to investigate the use of ZnO varistor as surge absorption device in low voltage, metal oxide material($TiO_2$) was selected as control material of grain growth. Samples of ZnO varistors were fabricated with varying the contents, and then the microstructures and V-I characteristics were measured. It was observed by SEM that the mean grain size increased with the increase of the additive. From the measurement of V-I characteristics, it was observed that according to the increase of the quantity of $TiO_2$ as additive, the operating voltage was lowered.

  • PDF

SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향 (The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process)

  • 윤기석;양범석;이종현;원창환
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.