Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.2.09

Influence of the MgO-TiO2 Co-Additive Content on the Phase Formation, Microstructure and Fracture Toughness of MgO-TiO2-Reinforced Dental Porcelain Nanocomposites  

Waiwong, Ranida (Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University)
Ananta, Supon (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University)
Pisitanusorn, Attavit (Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University)
Publication Information
Abstract
The influence of the co-additive concentration (0 - 45 wt% with an interval of 5 wt%) of MgO-$TiO_2$ on the phase formation, microstructure and fracture toughness of MgO-$TiO_2$-reinforced dental porcelain nanocomposites derived from a one-step sintering technique were examined using a combination of X-ray diffraction, scanning electron microscopy and Vickers indentation. It was found that MgO-$TiO_2$-reinforced dental porcelain nanocomposites exhibited significantly higher fracture toughness values than those observed in single-additive (MgO or $TiO_2$)-reinforced dental porcelain composites at any given sintering temperature. The amount of MgO-$TiO_2$ as a co-additive was found to be one of the key factors controlling the phase formation, microstructure and fracture toughness of these nanocomposites. It is likely that 30 wt% of MgO-$TiO_2$ as a co-additive is the optimal amount for $MgTi_2O_5$ and $Mg_2SiO_4$ crystalline phase formation to obtain the maximum relative density (96.80%) and fracture toughness ($2.60{\pm}0.07MPa{\cdot}m^{1/2}$) at a sintering temperature of $1000^{\circ}C$.
Keywords
Co-additive; Dental porcelain; MgO-$TiO_2$ content; Nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Pisitanusorn, W. Schulle, and S. Ananta, "The Influence of Crystalline Phase Additions on the Mechanical Properties of Dental Ceramic Materials: Ceramic Materials Reinforced with Alumina-Based Nanocomposites," Interceram, 55 [4] 250-53 (2006).
2 P. J. Babu, R. K. Alla, V. R. Alluri, S. R. Datla, and A. Konakanchi, "Dental Ceramics: Part I An Overview of Composition, Structure and Properties," Am. J. Mater. Eng. Tech., 3 [1] 13-8 (2015).
3 P. C. Guess, S. Schultheis, E. A. Bonfante, P. G. Coelho, J. L. Ferencz and N. R. Silva, "All-Ceramic Systems: Laboratory and Clinical Performance," Dent. Clin. North Am., 55 [2] 333-52 (2011).   DOI
4 S. J. Saint-Jean, "Dental Glasses and Glass-Ceramics," pp. 255-77 in Advanced Ceramics for Dentistry, Butterworth-Heinemann, Oxford, 2014.
5 R. Morena, P. E. Lockwood, L. Evans, and C. W. Fairhurst, "Toughening of Dental Porcelain by Tetragonal $Zro_2$ Additions," J. Am. Ceram. Soc., 69 [4] C-75-7 (1986).
6 C. Sanitnapapong, A. Pisitanusorn, and S. Ananta, "Effects of Tempering Time on Phase Formation and Microstructural Evolution of Zirconia Modified-Dental Porcelain Ceramics," Chiang Mai J. Sci., 38 [2] 176-86 (2011).
7 W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, "Mechanical Properties of $Al_2O_3/Zro_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002).   DOI
8 N. Montoya, F. J. Serrano, M. M. Reventos, J. M. Amigo, and J. Alarcon, "Effect of $TiO_2$ on the Mullite Formation and Mechanical Properties of Alumina Porcelain," J. Eur. Ceram. Soc., 30 [4] 839-46 (2010).   DOI
9 D. Ragurajan, M. Satgunam, and M. Golieskardi, "The Role of Magnesium Oxide on the Mechanical Properties of YTZP Ceramic," pp. 21-5 in Proceedings of the International Conference on Advances In Mechanical. Aeronautical and Production Techniques, Kuala Lumpur, Malaysia, 2014.
10 C. Y. Tan, R. Tolouei, I. Sopyan, and W. D. Teng, "Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics," Adv. Mater. Res., 264 1849-55 (2011).
11 H. Manshor, S. M. Aris, A. Z. A. Azhar, E. C. Abdullah, and Z. A. Ahmad, "Effects of $TiO_2$ Addition on the Phase, Mechanical Properties, and Microstructure of Zirconia-Toughened Alumina Ceramic Composite," Ceram. Int., 41 [3] 3961-67 (2015).   DOI
12 L. Jiang, X.-Y. Chen, G.-M. Han, and Y. Meng, "Effect of Additives on Properties of Aluminium Titanate Ceramics," Trans. Nonferrous Met. Soc. China, 21 [7] 1574-79 (2011).   DOI
13 I. Shindo, "Determination of the Phase Diagram by the Slow Cooling Float Zone Method: The System MgO-$TiO_2$," J. Cryst. Growth, 50 [4] 839-51 (1980).   DOI
14 S. Filipovic, N. Obradovic, V. Pavlovic, V. Petrovic, and M. Mitric, "Influence of Mechanical Activation on Structural and Electrical Properties of Sintered $MgTiO_3$ Ceramics," Sci. Sintering, 41 [2] 117-23 (2009).   DOI
15 C.-J. Wang, C.-Y. Huang, and Y.-C. Wu, "Two-Step Sintering of Fine Alumina-Zirconia Ceramics," Ceram. Int., 35 [4] 1467-72 (2009).   DOI
16 V. Martinac, "Effect of $TiO_2$ Addition on the Sintering Process of Magnesium Oxide from Seawater," pp. 309-22 in Sintering of Ceramics - New Emerging Techniques. Ed. by A. Lakshmanan, Intech, Rijeka, 2012.
17 N. Vudhivanich, A. Pisitanusorn, and S. Ananta, "Effects of Zirconia Content on Leucite Crystallization and Microstructural Evolution of Dental Porcelain Ceramic-Nanocomposites," Chiang Mai J. Sci., 41 [2] 435-46 (2014).
18 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981).   DOI
19 J. H. She and K. Ueno, "Effect of Additive Content on Liquid- Phase Sintering on Silicon Carbide Ceramics," Mater. Res. Bull., 34 [10] 1629-36 (1999).   DOI
20 I. W. Chen and X. H. Wang, "Sintering Dense Nanocrystalline Ceramics without Final-Stage Grain Growth," Nature, 404 [6774] 168-71 (2000).   DOI
21 Z. Z. Fang and H. Wang, "13 - Sintering of Ultrafine and Nanosized Ceramic and Metallic Particles," pp. 431-73 in Ceramic Nanocomposites. Ed by R. Banerjee and I. Manna, Woodhead Publishing, Cambridge, 2013.
22 M. H. Fathi and M. Kharaziha, "Two-Step Sintering of Dense, Nanostructural Forsterite," Mater. Lett., 63 [17] 1455-58 (2009).   DOI
23 F. Funabiki, T. Kamiya, and H. Hosono, "Doping Effects in Amorphous Oxides," J. Ceram. Soc. Jpn, 120 [1407] 447-57 (2012).   DOI
24 R. Narayan, P. Kumta, C. Sfeir, D.-H. Lee, D. Choi, and D. Olton, "Nanostructured Ceramics in Medical Devices: Applications and Prospects," JOM, 56 [10] 38-43 (2004).   DOI
25 E. N. Culea, P. Pascuta, M. Pustan, D. R. Tamas-Gavrea, L. Pop, and I. Vida-Simiti, "Effects of Eu:Ag Codoping on Structural, Magnetic and Mechanical Properties of Lead Tellurite Glass Ceramics," J. Non-Cryst. Solids, 408 18-25 (2015).   DOI
26 S. D. Skrovanek and R. C. Bradt, "Microhardness of a Fine- Grain-Size $Al_2O_3$," J. Am. Ceram. Soc., 62 [3-4] 215-16 (1979).   DOI
27 A. Franco Junior and D. J. Shanafield, "Thermal Conductivity of Polycrystalline Aluminum Nitride (AlN) Ceramics," Ceramica, 50 [315] 247-53 (2004).   DOI
28 R. W. Rice, "Ceramic Tensile Strength-Grain Size Relations: Grain Sizes, Slopes, and Branch Intersections," J. Mater. Sci., 32 [7] 1673-92 (1997).   DOI
29 K. Niihara, "New Design Concept of Structural Ceramics," J. Ceram. Soc. Jpn, 99 974-82 (1991).   DOI
30 P. Palmero, "Structural Ceramic Nanocomposites: A Review of Properties and Powders' Synthesis Methods," Nanomaterials, 5 [2] 656-96 (2015).   DOI
31 J. D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, "Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness," MRS Bull., 29 [01] 22-7 (2004).   DOI
32 C. Santos, K. Strecker, S. A. Baldacim, O. M. M. da Silva, and C. R. M. da Silva, "Influence of Additive Content on the Anisotropy in Hot-Pressed $Si_3N_4$ Ceramics Using Grain Orientation Measurements," Ceram. Int., 30 [5] 653-59 (2004).   DOI
33 B. Tang, H. Li, P. Fan, S. Yu, and S. Zhang, "The Effect of Mg:Ti Ratio on the Phase Composition and Microwave Dielectric Properties of $MgTiO_3$ Ceramics Prepared by One Synthetic Process," J. Mater. Sci.: Mater. Electron., 25 [6] 2482-86 (2014).   DOI
34 U. Ichiro, "Effects of Additives on Piezoelectric and Related Properties of $PbTiO_3$ Ceramics," Jpn. J. Appl. Phys., 11 [4] 450 (1972).   DOI
35 R. O. Ritchie, "Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids," Int. J. Fract., 100 [1] 55-83 (1999).   DOI
36 Y.-M. Miao, Q.-L. Zhang, H. Yang, and H.-P. Wang, "Low-Temperature Synthesis of Nano-Crystalline Magnesium Titanate Materials by the Sol-Gel Method," Mater. Sci. Eng., 128 [1-3] 103-6 (2006).   DOI
37 C. Suryanarayana, "Structure and Properties of Nanocrystalline Materials," Bull. Mater. Sci., 17 [4] 307-46 (1994).   DOI
38 L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D. C. Culita, A. Rusu, R. State, and M. Zaharescu, "Porous Nanosized Oxide Powders in the MgO-$TiO_2$ Binary System Obtained by Sol-Gel Method," Ceram. Int., 40 [10] 15693- 701 (2014).   DOI
39 J. L. X. F. Chen, T. T. Feng, Y. S. Jiang, X. H. Zhang, H. T. Wu, and Y. L. Yue, "Study on the Synthesis of Nano-Crystalline $Mg_2SiO_4$ Powders by Aqueous Sol-Gel Process," Key Eng. Mater., 538 142-45 (2013).   DOI
40 M. D. Lind and R. M. Housley, "Crystallization Studies of Lunar Igneous Rocks: Crystal Structure of Synthetic Armalcolite," Science, 175 [4021] 521-23 (1972).   DOI
41 R. Kamalian, A. Yazdanpanah, F. Moztarzadeh, R. Ravarian, Z. Moztarzadeh, M. Tahmasbi, and M. Mozafari, "Synthesis and Characterisation of Bioactive Glass/Forsterite Nanocomposites for Bone and Dental Implants," Ceram.- Silik., 56 [4] 331-40 (2012).
42 L. Cheng, P. Liu, X. Chen, W. Niu, G. Yao, C. Liu, X. Zhao, Q. Liu, and H. Zhang, "Fabrication of Nanopowders by High Energy Ball Milling and Low Temperature Sintering of $Mg_2SiO_4$ Microwave Dielectrics," J. Alloys Compd., 513 373-77 (2012).   DOI
43 S. Ni and J. Chang, "In vitro Degradation, Bioactivity, and Cytocompatibility of Calcium Silicate, Dimagnesium Silicate, and Tricalcium Phosphate Bioceramics," J. Biomater. Appl., 24 [2] 139-58 (2009).   DOI