Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.11.746

DSSCs Efficiencies of PEG Additive In TiO2 Paste  

Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University)
Yang, Wook (Department of Electrical Engineering, Pukyong National University)
Zhang, Zi-Heng (Department of Electrical Engineering, Graduate School Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.11, 2014 , pp. 746-752 More about this Journal
Abstract
Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.
Keywords
DSSC; $TiO_2$; Photo electrode; PEG; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. W. Hamann, R. A. Jensen, A.B.F. Martinson, Hal Van Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008).   DOI   ScienceOn
2 B. O'Regan and M Gratzel, Nature, 353, 737 (1991).   DOI
3 L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007).   DOI   ScienceOn
4 Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009).   DOI   ScienceOn
5 S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 26, 3 (2013).
6 H. J. Kim, D. Y. Lee, and J. S. Song, J. KIEEME, 18, 571 (2005).
7 H. Cho, S. G Yu, and J. W. Cho, J. KIEEME, 22, 269 (2009).
8 P. Qin, M. Linder, T. Brink, G. Boschloo, A. Hagfeldt, and L. Sun, Adv. Mater., 21, 2993 (2009).   DOI   ScienceOn
9 B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007).   DOI   ScienceOn
10 C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, Adv. Powder Technol., 22, 31 (2011).   DOI   ScienceOn
11 K. Kajihara and T. Yao, J. Sol-Gel Sci. Technol., 12, 185 (1998).   DOI
12 H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 667 (2008).
13 X. G Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
14 H, S Park. S. Y. Kwon, and W. Yang, J. KIEEME, 25, 7 (2012).
15 S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovolt: Res. Appl., 10, 1002 (2007).
16 B. Munkhbayar, S. H. Huang, J. H. Kim, K. Y. Bae, M. K. Ji, H. S. Chang, and H. M. Jeong, Electorchimica Acta, 80, 1 (2012).   DOI   ScienceOn
17 X. Z. Liu, Z. Huang, K. X. Li, H. Li, D. M. Li, L. Q. Chen, and Q. B. Meng, Chinese Phys. Lett., 23, 2606 (2006).   DOI   ScienceOn
18 H. Chang, C. H. Chen, M. J. Kao, S. H. Chien, and C. Y. Chou, Appl. Surf. Sci., 275, 15 (2013).
19 S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 27, 2 (2014).
20 M.K.I. Senevirathna, P.K.D.D.P. Pitigala, E.V.A. Premalal, K. Tennakone, G.R.A. Kumara, and A. Konno, Sol. Energ. Mater. Sol. Cells., 91, 544 (2007).   DOI   ScienceOn
21 L. Zhang, Y. Zhu, Y. He, W. Li, and H. Sun, Appl. Catal. B-Environ., 1243, 1 (2002).
22 Q. H. Tian, G. L. Zhao, and G. Y. Han, J. Funct. Mater., 35, 02 (2004).