• Title/Summary/Keyword: $TiCl_3$

Search Result 442, Processing Time 0.025 seconds

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network (가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

Study on the Resistor Formation using an $Al_2O_3$ Etch-Stop Layer in DRAM (DRAM에서 $Al_2O_3$를 식각 정지막으로 이용한 레지스터 형성에 관한 연구)

  • Park, Jong-Pyo;Kim, Gil-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.153-156
    • /
    • 2005
  • 원자층 증착 (atomic layer deposit : ALD) 방식으로 증착한 $Al_2O_3$의 건식식각 특성을 연구하였다. 전자 싸이클로트론 공진 (electron cyclotron resonance : ECR) 방식의 건식식각장치에서 source power, bias power, 압력 그리고 $Cl_2$ 가스를 변수로 하여 $Al_2O_3$의 식각속도와 Poly-Si 의 $Al_2O_3$에 대한 선택비를 측정하였다. bias power가 감소할수록 그리고 압력이 증가할수록 $Al_2O_3$의 식각속도는 감소하였고 Poly-Si 의 $Al_2O_3$에 대한 선택비는 증가하였다. 이 특성을 이용하여 TiN/$Al_2O_3$/Poly-Si 구조의 캐패시터와 Periphery 회로영역의 레지스터를 $Al_2O_3$를 식각 정지막으로 이용하여 구현하였다.

  • PDF

Fabrication and Physicochemical Properties of Carbon/Titania/Bentonite Monolith for Architecture

  • Oh, Won-Chun;Choi, Jong-Geun;Song, Da-Ye;Kim, Ha-Rry;Chen, Ming-Liang;Zhang, Feng-Jun;Park, Tong-So
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, we used activated carbon (AC) and titanium oxysulfate as a titanium precursor to prepare carbon/titania composites. We then mixed it with bentonite in different ratios to make a carbon/titania/bentonite monolith for use in architecture bricks by using Phenolic rosin (PR) as a bonding agent. The physicochemical properties of the prepared composites were analyzed by BET surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), self-cleaning effect and bactericidal tests. The BET surface areas increased as the ratio of carbon/titania composites increased. The SEM microscopy showed that the $TiO_2$ and bentonite were coated on the surface of the AC. The XRD patterns showed a mixture structure of anatase and rutile of $TiO_2$ with a clear $SiO_2$ structure. The EDX spectra of the carbon/titania/bentonite monolith confirmed the presence of various elements, namely C, O, Ti and Si, as well as other, impure elements. Moreover, to determine the self-cleaning effect of the carbon/titania/bentonite monolith, we used methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution under the irradiation of visible light. Accordingly, all of the samples had excellent degradation of the MB solution. Furthermore, it was observed that the composites with sunlight irradiation had a greater effect on E. coli than any other experimental conditions.

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol;Kim, Jong-Gu;Naik, Mehraj-Ud-Din;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2011
  • Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

Selective Chlorination of Iron from Titaniferrous Magnetite in a Fluidized Bed Reactor (유동층 반응기에서 함티탄자철광의 선택염소화 반응)

  • Lee, Sang-Soon;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.451-463
    • /
    • 1992
  • A selective chlorination of titaniferrous magnetite in a fluidized bed reactor was investigated to find the optimum condition for selective removal of Fe component from low grade titaniferrours magnetite ore and to produce a rutile substitute from titaniferrous magnetite ore. The optimum chlorination condition was determined to be a temperaure of $950^{\circ}C$, 2hr of reaction time, reducting agent(petroleum coke) to titaniferrous magnetite weight ratio of 0.12, and $Cl_2$ gas velocity of 5cm/sec. Under the above mentioned condition, 99% of Fe in titaniferrous magnetite was removed and the reaction residue which became rutile substitute was identified as rutile by x-ray diffraction and was found to contain 70% $TiO_2$.

  • PDF